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Abstract

In this paper, we consider the generalized method of moment (GMM) and simple instru-
mental variable (IV) type estimation of dynamic panel data models with both individual-
specific effects and heterogeneous time trend. We consider the forward demeaning (FOD)
proposed by Hayakawa et al (2017) and the double first difference (FD) to remove both the
individual-specific effects and heterogeneous trend. We establish the asymptotic properties
of the GMM estimation of the lag coefficient and find that the GMM estimation using FOD
is asymptotically biased of order \/% , while the GMM using FD is asymptotically biased

of order 4/ TWS We also establish the asymptotic unbiasedness of the simple IV estimation.
Monte Carlo simulations confirm our findings in this paper.
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1 Introduction

In this paper, we consider the dynamic panel data models with both individual-specific effects
and heterogeneous time trend. One of the unique features of the dynamic panel models is that
the presence of unobserved individual-specific effects creates the correlation between all past,
current and future observations (Hsiao (2014)). However, the individual-specific effects appears
linearly in the model. In principle, any differencing method that preserves the linear structure
of the model can eliminate the time-invariant individual-specific effects. After elimination
of individual-specific effects, another unique feature of panel dynamic models is that lagged
variables can be used to create orthogonal conditions. As a result, generalized method of
moments (GMM) estimator or instrumental variables (IV) estimator can be adapted to estimate
the parameters in the model. However, these linear transformation may not remove the time
trend at the same time, and dynamic panel with both individual effects and time trend needs
special treatment.

In this paper, we consider the forward demeaning (FOD) method of Hayakawa et al. (2017)
and the double first difference (FD) (Wansbeek and Knaap (1999) and Hayakawa and Ge
(2017)) to simultaneously remove the individual specific effects as well as the heterogenous trend
in dynamic panels. Once the individual effects and the time trend are removed, we propose
the Alvarez and Arellano (2003) type GMM estimator and simple IV estimator for the lag
coefficient. It is shown in the paper that, the GMM estimator based on FOD is consistent and
asymptotically normally distributed, but it is asymptotically biased of order %, while for the
GMM estimator based on FD is asymptotically normally distributed, but it is asymptotically
biased of order \/? . We also show that the simple IV estimator based on either FOD or FD
transformed model is asymptotically unbiased and asymptotically normally distributed. The
finite sample properties of both the GMM and IV estimation are examined through Monte
Carlo simulations, and we find that the simulation results confirm our theoretical findings in
the paper.

The rest of the paper is organized as follows. Section 2 sets up the basic model and discusses
the approaches to eliminate both the individual effects and time trend. The GMM and simple
IV estimation together with their associated asymptotics are provided in Section 3 and Section
4, respectively. Section 5 presents the finite sample properties of the GMM and IV estimation
through Monte Carlo simulations, and Concluding remarks are in section 6. All mathematical

derivations and additional simulation results are relegated to the Appendix.



2 Model

2.1 Model

We consider a simple dynamic panel model of the form
Yit = VYit—1 4oa; +6t+uy, t=1,...,N;t=1,...,T, (2.1)

where || < 1 and u; has zero mean given g, d;, yio, - - - , Yit—1. For ease of notations, we assume
that y;o is observed. This model has been widely used in empirical studies in economics, to
name a few, see Hegwood and Papell (2007) and Conti (2014), among others.

For model (2.1), the goal is to estimate the lag coefficient v with the observed y;; when both
N and T are large. To this end, we make the following assumptions:

Assumption 1 (A1l). {u;} are independent and identically distributed (i.i.d) across time
and individuals and independent of 0, ; and &;, with E (u;) = 0, Var (u;) = o2, and finite
moments up to fourth order.

Assumption 2 (A2). Individual-specific effects «; are i.i.d across individuals with E («;) =
0, Var (o) = 02, and finite fourth order moment.

Assumption 3 (A3). The coefficient for the trend ¢§; are i.i.d across individuals and
independent of «;, with E (0;) =0, Var (§;) = Ug, and finite fourth order moment.

Assumption 4 (A4). The initial observations y;o satisfy

i Y9

L — _ +UJ',
Yio 1—~ (1_7)2 10

where w;y is independent of «; and J;, and i.i.d with the steady state distribution of the
homogeneous process, so that w;g = Z?io o Ui, —s-

The above assumptions are quite standard in the literature for dynamic panel models, e.g.,
Alvarez and Arellano (2003), Hayakawa (2009). It should be noted that the homoskedasticity as-
sumption in (A1) is for simplicity, all results obtained below can be extended to heteroskedastic
errors with extra notations. The assumption of initial condition on ;g is also made on Hayakawa
and Nogimori (2010).

2.2 Elimination of Individual Effects and Time Trend

For model (2.1), stacking the observations over time period yields the vector form of
Yi =VYi—1 + ol + 67 +u;, i=1,...,N, (2.2)

where 77 = (1,2,...,T)".



For the above model, we consider the following two types of transformation to simultaneously
remove the individual-specific effects as well as the heterogeneous time trend. The first approach
is the so called forward demeaning (FOD, for short)! (Hayakawa et al (2017)). More specifically,
for model (2.2), let T; = T' — j and define the following matrix

1 2(72T2) 2(72T2+3) 2(72T2+6) 2(72T2+3T3) 2(72T2+3T2)
T To T1To T1Ts T Ts T Ts
0 1 2(—2T3) 2(—2T5+3) 2(—2T5+43Ty)  2(—2T3+3T3)
T, T, ToTs ToTs
0 0 1 2(—2T}) 2(=2T4+3T5)  2(=2T4+3T})
FT ;o= CT 13Ty 13Ty 13Ty
2X 2 0
2(—2-2) | 2(—4+3) 2(—4+6)
R P 2(ay3)
0 0 0 1 ST 21
0 if s>t
= {fu}= a=1+0(75) s =1t (2.3)
2¢s[—2(T—s—1)+3(t—s—1)] __ 1 —s .
et = -0 () + 0 (dE) s <t
with Cp, = diag (c1,c2,...,c7_2) and ¢ = % Then we have?
Fr,x7r (ailT + 5iTT) =0, (2.4)
and multiplying both sides of (2.2) by Frp,«r yields
yz(f)zwgf_)ﬁugf)? i=1,...,N, (2.5)

where y§f) = Frx1yis yE,ffl = Fr,x7Yyi—1 and ul(f)

transformed model is given by

(f) (f) (f)

= Fr1,x7u;. The t-th element of the above

yit :’)/yit,1+uit 3 74:17,N7t:1, .,T—Q, (26)
where
yz(tf) = fuyit + frar1¥igr1 + -+ frryir,
3/@(,];)71 = fuVYit—1 + fre1Yie + o+ frryiT-1,
ugtf) Jrewit + fris1Uige1 + -+ forwir.

The second approach is the so called first difference (FD, for short) (Anderson and Hsiao
(1981, 1982), Arellano and Bond (1991), Wansbeek and Knaap (1999)). More specifically, for

Tt should be noted that the usual FOD (Alvarez and Arellano (2003), Arellano and Bover (1995)) can’t
remove the time trend in model (2.1).
2A formal derivation is given in the appendix.



model (2.1), the FD yields

Ayit = YAY; 1+ 0 + Auy, 1=1,...,N;t=2,...,T, (2.7)
with Ayit = yit — Yit—1, and another FD will eliminate ¢; from (2.7) as well

Ay = yA%yi o + Ay, i=1,...,N;t=3,...,T, (2.8)

where A%y = Ay — Ayir_1.

3 GMM Estimation and Their Asymptotics

In this section, we consider the GMM estimation of the lag coefficient v based on either the
FOD or FD approach to eliminate individual-specific effects and the heterogeneous time trend,

and we also establish the asymptotics for the GMM estimation.
3.1 GMM Estimation Based on FOD
For model (2.6), under Assumptions (A1)-(A4), we have
E (y,suz(tf)) =0, for any s < t, (3.1)

thus, we can use (v, ..., Yit—1) as IVs for model (2.6).

We notice that model (2.6) can be rewritten in vector form as

v =t +ul =1, T -2, (3:2)
! / '
where v = (405D, .81 3 = (s0Lrs o yfle,) and ) = (DD, o))

Define y; = (y1t, Yot, - - -, yne) and Pyq = Zy_4 (Zé_lzt—l)il Z, withZ, 1 = (yo,y1,-.-,¥i—1)
fort =1,...,T — 2, then the GMM of 7 based on (3.2) using Z;_; as the instruments is given
by (Alvarez and Arellano (2003))

T—2 AN
Y6 = <Z yﬁf)fPt—lyg)l) S yiP oy (3.3)
t=1 t=1

3.2 GMM Estimation Based on FD

For the first differenced model (2.8), under Assumptions (A1l)-(A4), we have the following
orthogonal conditions,
E (yisAQuit) =0, for s <t—2, (3.4)



i.e., we can use (Yo, Yi1,---,Yit—3) as IV for (2.8).

It can also be noted that model (2.8) can be rewritten in vector form as
Azyt = ’)/A2yt_1 + A2ut, t= 3, N ,T; (35)

where A2y; = (A2yyy, A2yoy,..., Alyny)', A2y 1 = (A%yy_1, A%yn,..., A%yne—1) and
Ay, = (A2u1t, A2y, ..., AzuNt),, then the GMM estimation of v based on (3.5) is given by
(Alvarez and Arellano (2003))

T -1
AENrm = (Z A2yg_1Pt3A2y1ﬁ1> > A’y P3Ny, (3.6)
t=3 t=3

where Py_3 = Z; 3 (Z, 37 3) ' Z_ with Z;_3 = (yo,y1,---,yt_3) -

3.3 Asymptotics of the GMM Estimator Based on FOD

For the GMM estimator (3.3), we note that

T—2 -1 T—
1
VNT (3ESR =) = <NT Zygf)l’Pt_lng) Z v, 1Pt— ), (3.7)
=1 =1

T

and it is shown by Lemma A.3 in the appendix that

ST ) &
/
T E :ytflpt—lytfl G
t=1

IS
—
©
oo
~—

and

o2 4
) [T o,
\/— E Yt 1Pt 1y —>dN< 1_7 N’l—'y2>' (3.9)

under restriction & — ¢ # 0 < oo as (N, T) — oc.
Substituting (3.8) and (3.9) into (3.7) yields the limiting distribution of 459/2,, which is

summarized in the following theorem.

Theorem 1 For the GMM estimator (3.3), under Assumptions (A1)-(A4) and as (N,T) — oo

with & — ¢ # 0 < oo, we have
VT (G588, ) —a N (- (14 Vi1 7). 310

Remark 1 From (3.10), we can observe that the GMM estimator (3.3) is consistent as long

as N — oo since

. 1+ -
85k - = - w0, ()2,



but it is asymptotically biased of order \/% if % —c#0< 00 as (N, T) — oco. We can also
note that the asymptotic distribution of the GMM estimator (3.3) for dynamic model with a
trend is identical to the GMM estimator for dynamic model without a trend as in Alvarez and
Arellano (2003). The intuition of this observation is that the instruments set for the GMM
estimation of dynamic panel with or without a time trend are identical, so there will be no

efficiency loss in the estimation.

3.4 Asymptotics of the GMM Estimator based on FD

For the GMM estimator (3.6), we note that

T -1 T
1 1
VNT (REP =) = | —= Y A%y, P, 3A’%y,_ —— ) A%y P, 3A? 3.11
('VGMM 7) (NT; Yi1E—3A7Yyi-1 \/ﬁtz:; Y1 Fi—3Aa7u, ( )

and it is shown by Lemma A.4 in the appendix that

1« A2y P, aA2 (1—7)3 2 (3.12)
_ E _ JPIEN S )
NT £ Yi1Ft-32Yt—-1 —p T+~ 0w
and
T 4
1 4—7)o2 |T3 2(1—4)* (3 —7)ot
\/ﬁ E A2y£_1Pt,3A2ut —d N <_(;) W’ ( 71)4_(7 ,}/) > y (313)
t=3

under the restriction that TW:)’ — Kk #0<o0as (N,T)— oo.
Substituting (3.12) and (3.13) into (3.11) yields the limiting distribution of 45%;,,, which

is summarized in the following theorem.

Theorem 2 For the GMM estimator (3.6), under Assumptions (A1)-(A4) and as (N,T) — oo

. 3
wzth%—>n#0<oo, we have

. 4—~)(1+ 2(1+~) (3 —
2(1-7) (1—=7)
Remark 2 From (3.14), we can observe that the GMM estimator (3.6) is no long consistent

if £ —c#0<o00 as (N, T) — oo since
T

~FD
~v=0. =
Temm — 7 p(N)’

and we need N much larger than T to reach consistency. However, even if % — 0 but %3 —

k# 0 < oo as (N, T) — oo, the GMM estimator (3.6) is consistent but it is asymptotically

biased of order \/k. It is also obvious that the asymptotic variance of (3.14) is much larger than
that of (3.10), thus we can claim that (3.6) is not as efficient as (3.3).



Remark 3 Note that based on FOD transformation, there exist E (Ayisuﬁf)> = 0 for any
s < t, and based on FD, we also have E (AyisAQUit) =0 for any s <t — 2. Consequently, in
addition to using level lags as instruments, we can also use first difference lags as instruments
for GMM estimators. These estimators will be investigated and compared through simulation

in the appendiz.

4 Simple IV Estimation and Their Asymptotics
For model (2.6), under Assumptions (A1)-(A4), we have
E (Ayisug)) =0, for any s < t, (4.1)

since ugtf ) is a combination of all future errors since time t, thus the lagged variables are legiti-

mate instruments. As a result, a simple IV estimator of v based on the FOD transformation is
given by (Hsiao and Zhou (2017))

R )
APP = (Z Ay;_ 1y§f)1> S Ay, (4.2)

t=2
For the asymptotics of (4.2), we note that

T—2 -1 T—

1

VNT (vaOD ’Y) = <NT ZAYQ1Y§f)1> \/t Z Yi- 1U§f)a (4.3)
t=2

t=2
and it is shown in Lemma A.5 in the appendix that as (N,T) — oo, we have

= 0 52
— E Ay, —p —2— 4.4
NT 2 Yi—1Yi—1 —p 1+~ (4.4)

and

1 = T o2 202
— Ay, N 2 J “ . 4.
VT & AV <O"’“<<1_7>2 " 1+7)> -

Substituting (4.4) and (4.5) into (4.3) yields the asymptotic distribution of (4.2) as follows.

Theorem 3 Under Assumptions (A1)-(A4), as (N,T) — oo, for the simple IV estimator (4.2)
of dynamic panels with heterogeneous trend using FOD to eliminate the individual effects and

the trend, we have

[\

VNT (459P —7) =4 N <o,ggw+2(1+fy)>. (4.6)
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Remark 4 From the above limiting distribution, it is obvious that the simple IV estimator
(4.2) based on FOD is asymptotically unbiased, and the asymptotic unbiasedness is independent
of the way of how (N, T) go to infinity.

For the first differenced model (2.8), under Assumptions (Al)-(A4), we have the following
orthogonal conditions,
E (AyisAQUit) =0, for s <t—2, (4.7)

i.e., we can use (Ay;1,...,Ay;+—3) as IV for (2.8). Thus, a simple IV estimator of v based on
the FD transformation is given by (Anderson and Hsiao (1981, 1982), Hsiao and Zhou (2017))

T -1
AV = <Z Ay;:_gA?Yt—1> ZAy2_3A2yt- (4.8)

t=4 t=4

Similarly, we have

T -1 T
1 1
VNT (%P\P —7) = < = Z AYQ—?,A?}’tl) — E Ay, sA%uy, (4.9)
NT t=4 NT t=4

and it is shown in Lemma A.6 in the appendix that as (N,T) — oo, we have

! ET:A’ A’ =7, (4.10)
B o, U= _
NT 2~ Yi-3= V-1 7 T " w
and .
1 2 (y? =57+ 10) o,
75 Ay!_.A%u; —4 N | 0, L. 4.11
VNT & Yees s e ( 147 (4-11)

Substituting (4.10) and (4.11) into (4.9) yields the asymptotic distribution of (4.8) as follows.

Theorem 4 Under Assumptions (A1)-(A4), as (N, T) — oo, for the simple IV estimator (4.8)
of dynamic panels with heterogeneous trend using FD to eliminate the individual effects and the

trend, we have

2(1+ 2 —5y+410
VNT (31’ =7) =a N | 0, A+7 b i )\, (4.12)
(1=7)
Remark 5 Similar to the FOD case, the Anderson-Hsiao simple IV estimator (4.8) based on
FD is asymptotically unbiased, and the asymptotic unbiasedness is independent of the way of
how (N, T) go to infinity. It is also of interest to compare the efficiency of these two estimators,

from (4.6) and (4.12), the ratio of these two asymptotic variance is given by

02 (14~)? o2
A T2+ B+ -9)+2(0-7)"
2047)(2 -5y +10) 2 (y2 = 5y 4+ 10) ’
(1=7)



as a result, one condition that the simple IV based on FOD is more efficient than the IV based
on FD is that

o2 2(y*=57+10) —2(1—7)4.
oy 1+7)1-7)7°

Remark 6 We notice that level lagged variables y;s also satisfy the orthogonal condition for
(2.6) and (2.8), however, it is shown in the appendiz that the simple IV estimation using
one level lag for both FOD and FD model is invalid, and the simulation results confirm our

theoretical findings.

5 Monte Carlo Simulation

In this section, we investigate the finite sample properties for GMM estimation and simple IV
estimation for dynamic panels with individual effects and time trend using either FOD or FD
transformation discussed in the previous sections. We consider the following data generating
process (DGP)

Yit = VYii—1 + i + 05t + uyy, (5.1)

we assume that a; ~ ITDN (0,1),6; ~ IIDU (—1,1), and uy ~ IIDN (0,1) for all i and ¢. For
the values of v, we let v = 0.2,0.5 and 0.7. We consider the combinations of N = 200, 500, 800
and T" = 25,50,100. The number of replication is set at 2000 times.

For the above DGP, we use both the FOD and FD transformations to eliminate the individ-
ual effects, «;, and time trend, §;t. We consider two types of GMM estimators for estimating
the lag coeflicient v: GMM based FOD and GMM based on FD using all available level lags,
as well as two types of simple IV estimators using only one first differenced lag. We calculate
median of estimates, median-bias as well as iqr (inter-quantile rage) for these estimators. The
simulation results are summarized in Table 1-3.3

Several important findings can be observed from the simulation results. First, we find that
the GMM estimator based on FOD and using all level lags behaves quite well, the median bias
is almost negligible when N or T is large, and the iqr reduces quite rapidly with the increase
of either N or T. We can also observe that the iqr for the GMM estimation based FOD is quite
close to those obtained in Alvarez and Arellano (2003, P1134-1135). Second, the GMM based

on FD using all level lags shows quite significant bias, but the bias decreases with the decrease

3 Additional simulation results of the GMM using first differenced lagges as IVs, and simple IV using level
lags as IV are provided in the appendix.
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of the magnitude of % (i.e., N increases faster than 7"). Finally, for simple IV estimation based
on both FOD and FD using only one first differenced lag as IV, the bias is almost negligible,
and the iqr also decreases with the increase of either IV or T, which is the evident that the
simple IV is asymptotically unbiased and consistent. In all, we conclude that the findings in

the simulation confirm our theoretical findings in the paper.

6 Conclusion

In this paper, we consider both the FOD and FD transformations to eliminate the individual
specific effects as well as the stochastic time trend in dynamic panels. We also consider the GMM
and simple IV estimation based on either FOD or FD transformation using either all available
instruments or only one instrument. Asymptotics for both GMM and simple IV estimation are

established in the paper. Monte Carlo simulations confirm our theoretical findings in the paper.
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Appendix

This Appendix includes the mathematical proofs and additional simulation results that are
omitted in the main paper.

A Derivation of (2.4)

To show how the transformation matrix Fr,«r removes the individual effects as well as the
time trend, let’s look at the multiplication of the ¢-th row of Fp, 7 with (a;17 + d;77), which
is given by

(fers feas -5 fer) (ailT +6;77)

B T—t—-1)+3(s—t—1)]
= o (1—1—28;1 T (T —1—1) )
[2(T—t—1)+3(s—t—1)]
+ct0; (t—I—QS:zt;rl T-0T—t-1) s) , (A.1)
where the first term of (A.1) can be shown
T T T
[2(T—t—-1)+3(s—t—1)] —2(T—-t-1) 3> ey (s—t—1)
S;; T—0(T—t-1) _sg%guwanﬁ—n+(T—5@—t—m
_ 3 (T—t—-1)(T —1t)
Sy g 2
1
= -5

which in turn gives

[2(T —t—1)+3(s—t - 1)
D i ey

Also, for the second term of (A.1), we have

T T
[—2(T—t—1)+3(3—t—1 [2T—t—1+3s]
8221 T—0(T—t—1) SE:JT T—i-1)°
(2T —t—1) (T—t)(T+t+1) T(T +1)(2T+1) tt+1)(2t+1)
RN Y 2 + 2T —0)(T—t—1)

T(TH+1)Q2T+1)—t(t+1)2t+1)— 2T +t+1)(T —t)(T+t+1)
2(T—t)(T—t—1)
3 — 2 4 2Tt + 2Tt —tT? —tT
2(T—t) (T —t—1)
(T—t)? +t—T ¢

- Brohm—t-n_ 2
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which in turn yields

[—2(T —t—1)+3(s —t —1)]
t+2 ) T—D(T—t—1)

s = 0.

As a result, the transformation matrix Fr, «r indeed removes the individual-specific effects and

the time trend of model (2.2) simultaneously.

B Derivation of the Asymptotics of the GMM and IV Estima-

tion

Let ||A]| = /tr (AA’) denote the Frobenius norm, Ay, (A) to denote the minimum eigenvalue
of A, and Apax (A) to denote the maximum eigenvalue of A. We also let C' denote a generic
finite constant which doesn’t depend on N or T', and whose value may vary case by case.

For model (2.1), under strict stationarity of y;;, we have
Yir (1 — L) = o + 6it + uye,

or ;
(a7} Ut
L S
Yit 1_7"1' l1—7L+1—’yL’

. t _ t _ 'y .
where it can be shown that 7L = T — oy &

Yit = o + §;t + wyg,

i _ 51. . . 4
where of = {4 — 51'@, d; = 1= and wj is a AR(1) process with
o0
Wit = YWit—1 + Uit = Z’Y‘Suz‘t—s-
s=0
4By definition, it can be verified that
(67 Y 51
Wit = Yit — +4; — t,
it Yit 1_7 1(1_7)2 1_7
and 5
(a7} 7
Wit—1 = Yit—1 — +0; 7 - (t—-1),

l—vy  T(1-9)? 1-7v
then by substituting the above two terms into

Wit = YWit—1 + Uit,

which in turn yields

Yit = & + Oit + YYir—1 + Use.

17
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It is obvious that for the FD approach to remove the individual effects as well as the trend,
we have

APyip = Awy, (A.3)

and for the FOD transformation, we have
ul) = wyl), (A4)

where

(f)
wiy = fuwir + frarWigrr + -+ frowir,

with fis (s > t) is given by (2.3).
Now let’s turn to the lemmas, which are needed for the derivation of the results in the main
paper.

Lemma A.1 Let k3, and ki, be the third and fourth order cumulants of u;. Also, let d;
and dg be N x 1 wectors containing the diagonal elements of Py = Z (ZQZt)_l Z, and Ps =
Z. (ZgZS)_1 Z', respectively, so that tr(Py) = dj1y =t and tr(Ps) = A1y = s, and djds <

min (¢, s), then under Assumption (A1), forl>r >t,p>q>sandt>s

Kaudids + 200s < (/4;4@ + 20’§) 5 ifl=r=p=q

4 ifl = =
Cov (u;Ptur,uz’DPsuq) = auf , ifl=p#r=24
K3l (dipsug) ifl=r=p#q<t
0 otherwise

and |E (d;p.u,)| < (st)/? 0.,

Proof can be found at Alvarez and Arellano (2003). The above result holds for models with
trend is because the trace and rank of P; and P remain the same for models without trend,
so the derivation of Alvarez and Arellano (2003) can be applied here.

Lemma A.2 Let Assumptions (A1)-(A4) hold, then the following holds as (N,T) — oo,

1 T-2

7EW/ Piawi 1 — %
NT — t—1 - - p 1

-

PR

Proof. To derive this result, similar to Lee et al. (2017), we notice that

1 T-2

T-2 T-2
1 1
7NT E Wé,lPt_lwt_l = 7NT E wé,lwt_l — 7NT E Wz/‘,fl (IN — Pt—l) W¢_1, (A5)
t=1 t=1 t=1

and w1 = y;_1 — a* — §* (t — 1) where a* = (af,...,a%) with of = % — §;—2— and

1=y (1-7)
& = (0%,...,0%) with 67 = &

1—v"
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Let p,_; be the N x 1 vector of errors of the population linear projection of o on Z;_,
then we have

o =a —Zy a1 with ay = [E (zi—12i_1)]  E (zi—10]). (A.6)

Similarly, let €;_1 be the N x 1 vector of errors of the population linear projection of é* on
Z;_1, then we have

€1 — 0" — Zt—lbt—l with bt—l = [E (zit_lz;t_l)} E (Zit—ldj;) s (A?)

where z;—1 = (Yi0, - .-, Yiu—1) -
In order to derive the properties of pu;,_; and €;_1, by using the decomposition, we have

Wit = YWit—1 + Uit
yir = o +0;t+ wy,
Zip—1 = a;li+0Ti1+ Wgt_l),
where 741 = (0,1,...,t — 1) and wgt_l) = (wjg, ..., wit—1) with w; s is an AR(1) process.

Let ©; be the t x t autoregressive matrix of w;; whose (j, k)-th element is given by vl‘i;’;' for

7, k=0,1,...,t— 1, then we have

/ 2 ! 2 / 2
E (Zitflzit_l) - O-Ot* 1t1t —|— 0'6* thth—l + Uuﬂt,
* 2
E (zit_lai) = O 1t7
* 2
E(Zitfldi) = 0-5*th11

where 02. = E (}?) and 02 = E (6;%) .

(A
To get an exact expression of the inverse of E (zit,lz;tfl) , we notice that

E (zit-12 1)

2 / 2 / 2 -1
= (O‘a*ltlt + o5 Ti—1Ty_1 + O'uﬂt>
2 2 / 2 -1 r(2 / 2 -1
lopi® (O'(S*Tt_th_l + auﬂt) 1,1, (Ué*Tt_th_l + auﬂt)

—1
1+ 03* 1; (Ug*Tt_lTLl + U%Qt> 1

2 ! 2 -1
= (05*7'15,17,5_1—{-0“915) -

9

and

—1 / —1
sl Qt Tt—thflﬂt

2 ’ 20! -2 / -1 -2 -1
(c3TiaTi + oo ) =0, GaTiaTi + ) =0, | —

1+ %17'2_19;173_1 ’
(A.8)

2
ag
where 3 = —052* . Then we have
u

oyt (10 )

l
1407, QT

—1 _ _
1, (03T +0o8%) 1, =0,71,9,'1, — =0(t), (A.9)
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since it can be shown that

1 — 0
1 ol ’)/t_l )
o -y 1+ =y
1
1 Y Y 1
Qt = , and Qt — " . 9
1 _ 72 . .
2
t—1 A2 1 —v 1+97 =
Yoy 0 o 1
which in turn gives
Q1 = -9 0,1-79,...,1=7,1),
/
_ 2 2 2
Ol = (-0 20 -7 =)=y =) A=) +7)
then it is obvious that
T%_lﬂt_ln,l =0 (t3) and 129;17},1 =0 (t2) . (A.10)
As a result, we have
-1
a1 = (O’Z* 1t12 + O-g*thlT;_l + O'iﬂt) Oi* ]-t

= (U%*Tt,172_1 + 0’391‘)71 Ui* 1
ot (o2riamh  +020) 11 (okr T +020) T L,
1+02.1; (o274 + U%Qt)_l 1,
o2.1} (0(2;*7',5_17'2_1 + U%Qt)_l 1,
1;

-1
1+ O'g{* 12 (Ug*Tt—lT£_1 + U%Qt)

2 / 2 -1 2
= (05*7',5_17',5,1 + O'uﬂt) oo 1y X (1 -

-1
o 0’3* (Ug*Tt—ng_l + U%Qt) ]—t (A 11)
- —1_ .
1+02.1] (O'g*thngil + O'%Qt) 1;

and

2 / 2 / 2 -1 9
2 / 2 -1 9
= (aa* 1,1, + auﬂt) O5xTi—1
2 2 / 2 -1 / 2 ’ 2 -1 9
O35« (O’a*ltlt + O‘th) Ti—1Tyq (Ja* 1,1 + auﬂt) 5 Ti-1

14027, (02.1,1) + U%Qt)_l Ti 1

-1
. (O'a* ]-t]-;t + O'%Lnt) O'(%*Tt_l (A 12)
14027 (02.1,1] + a%ﬂt)fl Ti_1

Consequently, given the above two coefficients, we have, for the ith element of p;_q,

(t—l)/

* / * / *x __/
i1 = 0] —Zy_qa1 = af (L—Ljay1) — 6Ty ja1 —w; a1

20



For E (p?_,) , under Assumptions (A1)-(A3), we have
E (1i5-1) = e (1= L) + 03 (tiya1)” +aj, B (Wz(t_l)wz(t_l)/) a1, (A13)

where E (wgt_l)wgt_l)/ =028,

For the first term, we notice that

1
B 2 .1 (05*7} 1Ty + 05 Qt) 1,
1+U 1) (05*7} 1Ty +02 Qt) llt

1
1+02 1) (05*73 1Ty +02 Qt) 11,5

- of)

by using the result (A.11), consequently, we have

1-— 1£at_1

2 1
0% (1—1jai1)" =0 <t2> : (A.14)
For the second term of (A.13),
2 (= oL A.15
o3 (Tiqa-1)” = Ao (A.15)
since
-1
Ti18-1 =

14 02.1} (627171, 1 + U%Qt)_l 1

B 02*0721/9_173_1 _0 ( 1 >
(1 + %17'2_19;17}_1) <1 + 02,1} (05*7't 1Ty +0 Qt) ! 1t>

by using the results (A.8)-(A.10).
Finally, for the third term of (A.13), we have

2 /(.2 / 2 -1 2 2 / 2 -1
’ (t—1)_ (t—1) O o+ 1t (O'(S*Tt_th71 + Uuﬂt) O'uﬂt (Ué*Tt—th,1 + O'uﬂt) 1t
a_ B {w; wy A-1 = 1,2
(1 +02.1; (02717 + 028Y) 1t)

_ 0 C) , (A.16)

by using the similar argument above.
As a result, combining (A.14)-(A.16) we have

E(u%_4)=0 <1) : (A.17)

t
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Similarly, for the residuals of projection on 6%, we have, for the ith element of €;_1,
€1 =0F — 2y by = —ailb 1+ 07 (1—7)_b ) —w Vb,
For £ (eft_l) , we note
E&ﬁﬂ:u%dum4f+a§@—TLﬁFQ2+M4E<ﬂFUﬂ“W)m4. (A.18)
For the first term o2. (1}b;_1)?, we notice that

-1
1, (02.1,1] + 028%) 03741

1+ 03*72_1 (03* 1,1; + U%Qt)il Ti_1

by =

2 21701
05:0, 1,82 T

(1 +o2or, | (02.1,1, + 020) " thl) (1+ 521,92 '1y)

- o)

by using the identity

-2 10—1 1O—1 Jy—1
-1 _ _ o %1 1,10 T o LT

12 (0‘2{* 1t1; + O’int) Tt—l = O-u21:‘,Qt 1Tt—1_ u t° 5t - t_l t _ O'u2tt—/_17
1+ 5010, 71, 1+ 01,0, 71,

and

002 (10 1)

-1 _ _
7'2_1 (ai* 1t1;; + aiﬂt) Ti—1 = UUQTQ_IQt 1Tt_1 — T %21,9_11 =0 (t3) ,
toE St
0.2
where s = —%-. Consequently, we have
2 / 2 1
o (1iby—1)" =0 i) (A.19)

For the second term of (A.18), we notice that

/ 2 / 200,) "1 42
T (02.1,1) + 028Y) 03T

1 - T:f—lbt—l - ]. - 1
1+ o027, (02. 1,1, + 02) T2

1

14027, (02.1,1) + U%Qt)_l Ti 1

_ o(;). (A.20)
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Finally, for the third term of (A.18), we have

7

bé_lE (wgt—l)w(t—l)/

) b; 1

= b,_02b, 1 <Cb,_ b,

IN

C

-1 -1
7'2_1 (03* ltlg + U%Qt) (Ua* ltlé + O'%Qt) Ti 1

. 2
(14 02mi o (0211 + 0300) ')

0]

As a result, combining (A.19)-(A.21) we have

Now let’s turn to equation (A.5), by definition of (A.6) and (A.7),

E(&.,) =0 (;) .

(A.21)

(A.22)

Wi1=yi1—a =6 (t—1)=y,_1— (Zt—lat—l + Ut—l) — (Zyabiy + &) (- 1),

then the second term of (A.5) will reduce to

v
[\

/!

O
Lol

IN
TMT T
— o -

~
V)

3= 3= 3= &l

t=1

w1 (In —

P, 1) wi

gy + (1) €t—1), (In —Piq) (o1 + (= 1) &)

(o1 + (= 1) €1) (yq + (t = 1) €r1)

T-2

t=1

1 2
Me—1By—1 + NT D =1 qe 1+ NT > (=1 €1y, (A23)

where the first equality follows from the fact that (I — P;—1) (yi—1 — Zi—1a;-1 — Zy—1by—1) =
0, and the penultimate inequality holds since

(o1 + (=1 e1) (In = Pyy) (g + (= 1) €1)
< Amax (In = Pi1) [(Nt—l +(t—1)e1) (g +(t—1) 61&71)} ;

where Apax (In — P¢—1) denotes the maximum eigenvalue of (Iy — Py_1), which is equal to 1

because (Iy — P;_1) is idempotent. And for (A.23), it can be shown that

=
NT Z Pi-1ii—1 = 0p (1),
t=1

23



since
= = 172 /4
2
NT;E Mi1b—1) = T;E(Nitl)ST;()(t)

= 0 <IO§T> — 0, asT — oo,

by using the result (A.17). Similarly, we have

T—2
1
Ni Z t - 1 Gt_lﬁtfl = 0p (].) s
t=1

since

1 T—2 ) 1 T—2 1 T—2 1
/
NT 2~ (t=1)"E (er-16-1) = ; (=1’ B(G) <5 >0 (t)

1
gT
<O >—>0 as T — oo,

T

by using the result (A.22). For the cross-product term, it can be shown that by using the
Cauchy—Schwarz inequality we have

1
B (€r-1p-1)| < \/E (€}_1€—1) E (1_11t4_1) = O <1€2) :

which leads to
T—2

2
NT (t—1) €111 =0p(1),
t=1
by following the above derivation.
As a result, as (N,T) — oo, we obtain

1 T-2 1 T-2
7T Z W£71Pt_1Wt_1 = ﬁ W£71Wt—1 + Op (1)
t=1 t=1
2
g
— p 1 _u727

as required. m

B.1 Asymptotics of GMM based on FOD and FD

Lemma A.3 Under Assumptions (A1)-(A4) as well as restriction % — ¢ # 0 < o0 as
(N, T) — oo, then the following holds for forward demeaning case,
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T—2 T-2
1
7 L viPeyl = Zwt 1Priwi1 + 0y (1)
t=1
2
g
— pl upr?
(b).
T2
u = w;_1Pi_1u; 4+ 0, (1
Zy tlt \/N—;tltlt p (1)

2 4
Y (_1% ‘/T,%2>,
—vy VN 1—xv

Proof. (a) In order to prove this result, using the result (A.4), we have yg )1 = wif )1, where

ng)l = fuwWi—1 + frap1We + -+ frrwr_1 = Z frsWs—1.

s=t

Given the above equalities, we can obtain

1 =) f) 1 0 )
/ !
NT Z yioaPeyy = NT Z w, Piwyty
=1 =1
| T2
= NT <Z frs1We - 1) P (Z ftsoWey— 1)
t=1 s1=t so=t

= T-1 ! T-1
= NT fawi1 + thsl+lwsl) Py (fttwt 1+th52+1W32>

t=1 s1=t so=t

1 T2 T-2 T-1
2
= — fawi_ Pioawi g + — E fuwi_1Piq E ft,504+1Ws,

NT = T

t=1 so=t

1 T-2 T-1
+NT ft 81+1ft so+1W Pt 1Wg,

where
1 T-2 1 T2
Al = ﬁ th%wg—lpt—lwt—l == ﬁ £ <1 +O (T_t>> Wt 1Pt 1Wi—1 +0p (1)
T—2
logT
— Zwt 1Pt 1Wt1+0 5 )
T
2
o
T T
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as (N,T) — oo by using the fact that fi; =1+ O (ﬁ) from (2.3) and the results of Lemma

(A.2). For the second term As, we have

) B T—-2T-1 . p O 1 o S—t+1
v = =y (1 t“—lﬁ*‘ﬁ*WWs
t=1 s=t
T-27-1
2 s—t+1
= ZO( —t) wi_ 1Py 1ZWS+NTZZ < )w,’tht_lws—i-op(l)
t=1 s=t
= Ay + Aso,
where
g T2 1 T-1 s
A = 7 20 (T_t> wiaPio1 ) <’Y”“Wt—1 + Z'Y‘”uz>
t= s=t 1=t
T-2 T-1 T—2 T-1
= —iZO ! wi  Piiw 1278 o1 2 ZO ES:’YS 'wi_ P
NT T—t) 1 NT =1
t=1 s=t s=t =t
T2
2y 1 — ATt
= _ﬁ Z O (H) W2_1Pt71Wt71ﬁ + Op (1)

as T — oo, where the third equality holds simply because £ (wg_lPt_lul) =0foralll >tand

by using the results of Lemma (A.1), and the 1
Similarly,

T-2T-1

D IP I

tlst
T—-2T-1

*ZZ

=1 s=t

Az

—t+1
(5 + )73 gt

/
w,_ Pi_iwy_

/
) w1 Pioawi g

as T — oo, and then we have Ay =0, (1).

26

—t+1
< > Wl/e_1Pt—1 <'Y

ast identity holds by following Lemma (A.2).

)

1D (s=t+1)y " 40, (1)
s=t

S
41 i
s +Wt—1+§ 7y
1=t

1Pioawi_1 4+ 0, (1)

1 _ ATt T _ ) T—t+1
1 (7((1_1)2 ) 1t)_vV >+Op(1)
T—t+1
1—~ +op(1)



Finally, for the term As, by following the derivation of As, we have

/

1 T—-2 1 T-1 S1
Ay = — 0() simtlyy, 1+ sithy, | P
N 2 (T_t)g Sz_t vy t—1 27 1 t—1

= 1,82= 1=t

lo=t
1 T—2 1 T-1
- - / s1—t+1_ so—t+1
= w7 @) ((T - t)2> w, 1 Pioawi g Z Y Y +
t=1 S1,82=t
9 T—2 1 T-1 D)
T 22 ¢ <T2) PN R P,
t=1 ( B t) 81,82=t la=t
T-2 1 s

T So
1 1
- O - Sl—ll 52—l2 / P _
+NT E <(T—t)2> g Y E Y u;, Fyquy,

t=1 s1,82=t 1=t lo=t
= Az + Asz + Ass, say,

and it is obvious that A3; = o0, (1) and Asz = o, (1) by following the above derivation, and for

Asg, since
0 ifly#1,

o2t if 1y =1y

)

) (uflPt_lulz) = {

under Assumption (Al), then

T-2 1 T-1 s
A33 = O <(]’_t)2> Z Z’st_mugpt_llll + Op (1)

s=t =t

1
NT
1
T2
C t
= N7 0 <> + 0, (1)

under assumption that % —c#0as N — oo.
Consequently, combining the above results yields

2
Oy

-

T—2
1 Sy f
NT P yt(—)lpt_lyg—)l —p 1 27

as required.
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(b) To show this result, from the above derivation, we have ugf ) = ZST:t fisus, then

L= 0y (f)
S
Y11y
NT =
L Wl (f)
= — 1Pi—1u
'NT Wy -1y
=
T—2 T
= \/t (fttwt 1+ thsl+1wsl) Py (fttllt+ Z ftszu52>
t=1 s1=t so=t+1
T2 1 T
= 7# fttwt 1P + ——= thtW£_1Pt71 Z ftsoUsy
NT = VNT = 32—t+1
T-2T-1 T-2T-1
/—ZthlerlfttW Piqus + ﬁzz Z frs1 11 fesa W, Pro1ug,
t=1 s1=t t=1 s1=t so=t+1

= By + By + B3y + By, say,

where the first term B; will contribute to the limiting distribution, since £ (ﬁ 23;2 nglPt_lut> =
0, and
2

T— T—
1
V (\/7 :E t 1Pt 1ut> = 7NT E Wt 1Pt 1ututPt 1We— 1)

t=1
o2 -2 o
NT ZE Wi Proiwiet) — 70

by Lemma (A.2) and cov(wtflPt_lut,stlPS_lus) =0, for t > s. Consequently, we have

1—~2’

-2 T—2

1
g w,_Piqupy = 7EW/_P_L1—|—O 1
ltttltlt \/ﬁtzl t—1t t—14¢ P()

4
4N (o, - f“72> :

from a standard central limit theorem for autoregressive processes.

For the second term, we have

1
By = ——> fuw; 1 Pr1 Y fisus

1
T-2 T
1 1 1 s—t
C S o () weres 3 [o(h) ro () w
NTt:1< <Tt)> . ”82;1 T—t (T —t)? ’
2

1 = 1 I
S0 F o
NT o Tt

so=t+1
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since E (w,_;P;_qu,) =0 for all s > ¢.
For the third term, we have

By = ft81+1W | lfttut

)
EE Lo (o) o (7)) (o) wrom

t=1 s=t t=1 s=t
| T-27-1 <5+1—t) /

t=1 s=t
= B3+ B3z + B33 + 0, (1),

f
F

note that for s > t,
E (wgPt_lut) =~5"E (uQPt_lut) =~5"E (tr (uQPt_lut)) = 'yS*tUZt,

then we have

g2 =2, T-1
B - _ U s—t 1
31 thIT_tS:tW +op (1)
B S L Lt
\/NthlT—t 11— P
B o2 1 =t o2 1 = ¢ VT4 o (1)
= — (1),
1—7\/NTt:1T—t 1—7\/NTt T —t
and
s2 T2, Tl
By = ——= 7 4 op (1)
NT (T_t)QsZ:t '
T-2 _
_ o2 t 1—’yTt+O (1)
VNT & (T-t)? 1-~v 7
2 T-2
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for the last term, we have

B3z = — 7" 40, (1)

By = — Z Sts141ftsa W, Prug,
1 T 1 s14+1—t
L oL V)10 1))
NT 1222 < (T—t> ((Tt)2
1 Sg—t ’

. (_O (T—t> o ((T—t)2>> Vo Pt
1 & 1

VNT “ Z Zl <(Tt)2>w1 = ttes 05 (1)

1 L 1
- O —— ) w. P, ju,, +o0,(1
NT 2 ((T—t)2>ws1 -1t 0p (1)

where the last equality holds since (wglPt_luSQ) =0 for s1 < s9. And notice that

/

S1 S1
- 1 -1 U
sims2tlyy 1+ Z Y | Poug, = Z Y uy P 1ug, + 0p(1)

=59 l=s9
s1—S82,,/
= T Projug, 4 0p(1)
N p,YSl—SQO_Zt?

/
wg, Prqus, =

2
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as s1 > S9, then we have

g2 T2 . T
B4 _ u 751—82_’_022(1)
VNT &= (T - t)° sg;
g2 T2 T
S-S IS DI SRR
NT t=1 so=t+1 s1=52
T—2 T _
-y oy BT
= p
VNT = (T -1 4, 11—
T—2 T—2 T
- 0'3 1 Zt(T—t—l)_ Ou 1 t Z ’YT S2+0 (1)
= P
1=y VNT & (T-t)? 1-vVNTZ (T-v*
T—2 T—2 _
or 1 t o 1 t(1 —~T t)+0 )
= P
-y YNT &= T-t (1-7)°VNT4< (T-t)?
T-2 T—2
_ o2 1 t o 1 t o, (1)
p
1-yYNT &= T-t (1-7)°VNT < (T —t)
Consequently, we have
o? 1 =2 t o? 1 =2 t
B +B - _ U + u T—t
5 4 1—7\/NT;T—75 1—7\/NT§_:1T—t7
B o2 1 TZ—Z t o 1 ==t
1—yVNT = (T -t)>  (1-7)?VNT = (T —t)?
B o2 1 TZ:2 t ATt lop 1 TZQ t
l=yyNT = Tt 1-yVNT = T-t
) T-2
lop 1 t
+o0p (1)
(1 v)ngT;(T—t)Q "
9 T-2
o 1 t
= - + 0, (1
1—7\/NT;(T—t)2 » ()
2
o T
= — — 1
1— v N + OP( )

as required. m
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Lemma A.4 Under Assumptions (A1)-(A4) as well as restriction Tk #0 < oo as

N
(N, T) — oo, then the following holds for FD case,
(a). .,
1 (1-7)°
L NTAZY Py oAy, U= 2
T; Yio1Et-—3A7Yi—-1 —p 1+~ Ows
(b).

d 4
> A 4—7)o2 [T3 2(1—9)*(3—7)ol
\F: ViPesa dN( ( 2) \/; : 1)+(7 o)

Proof. (a) The proof follows the previous derivation with a little modification to fit the case
of FD transformation. We note that

T

1

~NT E A%y, P 3A%y;
=3

= ZAQWt 1Pt 3A Wi_1

t73
1 L
-~ NT D (Wit = 2wy + W) Prog (Wit — 2o + Wi 3)
t=3
1 4 T 9 T
-~ NT w1 ProgWior - NT Z Wi Prawi2 + NT ZW:eflPt—?)Wt—?,
t=3 t—3 —3
4 & 1 <L
7T Z W£—2Pt—3wt 2~ ﬁ Z Wé_th_?,Wt_ig + ﬁ Z W£_3Pt—3wt—3
t=3 t=3 i—3
A
= 72 (1 =47 697 — 4y 1) Wi g Prswis
t=3
1 72— 4y +4)
Tzut 1Pt 3U¢— 1+(AN.TZut 2Pt 3Ut_2
t=3
1—-9)" T
- Wt Z“’t sPisWi—s + Op()
. puag ’
1+~
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_ 3 . .
under restriction TW — k #0 < 00 as N — oo, which holds since, for example,

T
NTZWt 1Pi—swi_3
t=3
L I
/
= WZ (Y’wi-s + w1 +yw2) Prgw; g
t=3
] T T
= ﬁtzg Wt 3Pi_3w_ 3+NT;ut 1Pi_awi_ 3+NTZ’Yut oPi_3wyi_3,

where the last two terms can be shown to be zero since F (uéflPt_gwt_g) =0, and

T

1 1
Var < Z u;_lPt_gwt_g) = 573 Z E (Wg_gpt—iiut—lu;_lpt—3wt—3)
NT —~ NT*= —~
2 & p
U
= N2T2 Z E (Wt73Pt—3wt—3)
t=3

= o(1).

Similar argument can be applied to other terms.
(b) To show this results, we have

A2yé_1Pt,3A2ut

[M]=

~+
Il
w

2/ 2
A Wt_1Pt73A Uy

M= 11~

(Wi_1 —2wi_o +w;_3) Py 3%y

%~ 3- &~ §-
~ ~ ~ ~

=3
T
= (V’Wi_g +yui s +uy_g — 29wy — 2w, + Wi_g) Pyg A%y
=3
(1-)’ S
= f Zwt 3P A%y + — Z fyu;,Q +uj_q — 2u£72) P, 3A%u,
=3
= Hi+ Hz,

since wy_1 = YWy_9 + u;_1. Then the first term H; will contribute to the limiting distribution
with

T 4 4
(1-9)° , 2 21-7)"B=9)e
Hy = > wi_gPi_3A%uy —g N (0, v
TOUNT e e 1+
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since F (H;) =0 and

1—
Var (H)) = a=nr NT ZE w,_sPi s A'wA?ujPy_swy_3)
t=3
4 T
Z E (W£_3P2_3A2utA2u;Ps,gws,g)
s>t

where the first term equals to

4 T

1_
Ao ZE wy_3Pro3 (W — 2wy +wy9) (g — 20y 1 + u2) Prozwy 3)

NT
(1 - 7 E / P ! 4 ! ! P
“NT Z (Wt_g t—3 (utut +a4m_1uy_q + ut72ut_2) thWt%S)
t=3
6(1—~)tod
6(1—9)" 0y +o(1),

602 (1 —~)* 4
NizE Wt 3Pt 3Wt 3) 1_72

t=3

and for the second term, we have

2(1 -7 & —
772 Z E(w£_3Pt_3A2utA2u;Ps_3wS_3)

=3
T
8(1-7)'o 22 2(1—9)* o2 /
= 2 AN B (W gPrawi o) + —————2 > E (W} 3P 3wy
NT NT P
3 87(1—7)40ﬁ 292 (1-7)' ol ol
v Y

where the last equality holds by Lemma (A.2). Consequently, we have

60k (1—7)" 8yt (1—7)" 29204 (1—~9)*
o, (=9 80,1 =2 270, (1—7) +o(1)

Var (Hy) = -2 =2 -2
2(1 —)* (3 =)ot
_ 200 7)0u+0(1).
1+~
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And H, will contribute to the asymptotic bias with

T
1
Hy = INT Z (yuj_g +uy_ — 2uj_o) Prg (up — 2us—1 + us—2)
t=3
N2 & 2 &
= — w_oPi w9 — —— u_Pi_su,_q+0,(1
W;tQtZ’,tQ m;tltiitl p (1)
T
C(4- )0’32
= t—i—op
vVNT =3
(4—7)o2 |13
= - 2 “ N+Op(1)

Combining these results yields

T 4 4
(4—n)os [T3 2(1—7)"(3—7)o,,
F;Ayt 1P 3AutHdN< 2 N 1+~ '

B.2 Asymptotics of Simple IV based on FOD and FD

Lemma A.5 Under Assumptions (A1)-(A4) and as (N,T) — oo, then the following holds for
FOD case

(a)-
L TZQ () _,
Ayiayi = T
NT — 1+7~
(b). .
—2 2 2
1 o 20
—— Y Ay;_ u(f)—>dN<0,02< S —+ “>>
T & e EANCI R
Proof. (a) In order to prove this result, using the result (A.4), we have y§ )1 = wif )1, where

ng)l = fuwi_1+ fror1wWe + -+ frrwro1 = Z ftsWs—1.

s=t

Also, we have Ay; = §*+Aw; from (A.1) where §* = (65,...,8%) and Aw; = (Awyy, ..., Awny)' .
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Given the above results, we can obtain

1 T-2 T-2 T
NT Z Ay;f—l)’t({)l = Z (67 + Aw;_y) <Z ftsws—1>
t=2 2 s=t
2

T

T
(6" + Aw;_) <fttwt—1 + Z ft,s+1w8>
s=t

Il
[\o}

S

I
3= 3= 3-
ci

T
Aw)_, (fttwt—l + Z ft,s+1Ws> +op (1),

t= s=t

[\

where the last equality holds by using the construction of (A.2) and Assumption (Al). By
using fis (s > t) defined in (2.3), it can be shown that

1 T2 T
ﬁ (fttAwg_lwt—l + Z ft,s—&-lAWé_le)
=2 s=t
1 =2 ;| T2 T
g ﬁ thtAWg—]_wt—l + W Zth,S-HAWg_le
t=2 t=2 s=t
r=2 T-2 T
! 1 1 1 s—t+1
- NT 1 O\ 77— A / - AT 0O —— ol——_ A /
(o) wm ey SE (o) o (725
1 T-2 T-2 ]
- A B 0 A )
NT 2 Wy {Wi_1 + NT tZ:; (T— t) Wi W1
T-2 T oo T
! ) s—t+1
[ - A / A ,
VT 22 (T—t> MRS s P3P <(T— >2> i

=2
= Il+12—|—13—|-14.

For the first term, noticing that w;; is an AR(1) process in (A.2), we have

= =
L = — Aw,_ w1 = — (Wi—1 — Wi_2) Wy
NT — NT —
T—2
1 o?
= ~T 2 (W1 Wit — Wi oWi 1) = Tt + op(1)
By using the similar argument above, we obtain
T—2
1 1
L, = — O ——)Aw, _
2 NT 2~ (T—t) Wi-1Wi-1
) T-2
oi 1 < 1 > logT
= 72 07— tal)=0p ,
14+~+T pa T—1 T



and

1 T-2 T 1
_ /
I3 = _ﬁ ZO(T—t) AWtilws
t=2 s=t
1 T-2 1 T s
S ST () of CRERSVRNERD SEReT
t=2 s=t =t
1 T-2 1 T
- T OQuJZf”%%NH+%U
t=2 s=t

o v 1 1 logT
= — A - 1) = =Tl
1+71—7Tt:20<T—t>+0p() Op( T )

1 TZZZT s—t+1
_ /
L= N7 O((Tt)2> M

t=2 s=t
) T—-2 T
Oy 1 ( 1 > s—t+1
= = @) (s—t+1)y + op(1)
1+7Tt:2 (T_t)2 SZ:;
B 0_3 1 T—-2 1 y (1 ,.}/Tft+1) (T t 4 1) 7T—t+2
= Tryr 29 2 2 1 Topld)
1 i \(T-1) (1-7) -7
2 1 T-2 1 — AT—t+1 2 1 1 T-2 T_t42
_ YOu - Y 5 Oy = Y +o0,(1)
I+ (A=y)T = (T-1) Ltyl—nT = Tt
1
= OP(T)}
T—t+2

where the last equality holds by noticing that ZT 21 7T ! and ZT 2 I

as |y| < 1. Combining these results, we can obtain

S S o log T
NT tZQ (fttAwé_lwtq + th,sHAWQ_lWS) 1 + O ( T ) '

s=t

are convergent

(T—

As a result, we have

1 f) o,
- E :A ! _Yu
NT 2 Yi—1Yi—1 —p 14+

as (N, T) — oo
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(b) To this end, we observe that

L (f)
——= ) Ay
NT =
1 T—2
= o Z (6* + Awy 1) <fttut + Z ftsus)
NT t=2 s=t+1
1 T-2 1 T-2 1 T
= — (6" + Awy_1) vy — s > o (T_t> (0" +Aw 1) > us+o,(1),
t=2 t=2

s=t+1

where the last equality holds by using the properties of fs in (2.3). For the second term, it is
obvious that the expectation is zero and the variance is given by

T2
1 1 1 ) *
NT E<O(T—t)O(T—s>(5 + Awy_q)’ Z uy, Z (6" + Aw,_ 1)>
Svt:2 W2 t+1 W5 8+1
| T2 ,
_ NTt_2E(O <(T_t)2>( + Awyy t; u, ) (8 +Awt1)>
- 1=t+1

T T

(o) o () e avr S5 w8 s s

s<t t1=t+1 s1=s+1

where, for t = s, we have

e e o )

ti=t+1
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and for ¢ > s,

1 1 N %
T—t)O(T—s>(6 + Aw;_1) Z uy, Z (60" + Aw,_ 1))

t1=t+1 s1=s+1

(
O<T1_t>O<T1_S>(5*+Awt1)’Et< S u, ZT: u;1> (5*+Aw81>>
1

t1=t+1 s1=s+1

) ((5* + Awy 1) (8% + Aw,_q )
2

2 t—s—1
_ O 1 >NO'2 ( 05 5 _ "Y (1 7) > ,
T-—s (I—7) T+~
then
1 =2 1 1
T 2 E<0 <H>0(H> (07 + Awe ) Z uy, Z (07 + Aw, 1>)
s,t=2 t1=t+1 s1=s+1

202 1 o2 AT (1 =) 02 logT
- Tl @y e >+0<T>

as (N, T) —
Consequently, we have

T-2 T-2

1 1 §
WZM{H@ fZ(é + Awi_1) u + 0, (1),

t=2 t=

and the first term will contribute to the limiting distribution with zero mean and the following
asymptotic variance

T—2 T-2
1 N 1 N X
Var <\/W ; (0" + Awt_l)’ut> = NT 2 E [(6 + Aw;_ 1) E; (utu;) (60" + Awt_l)]
0_2 T—2
= Niu E [(5 + AWt 1) (6* + AWt_l)]

t=2

(o)

as (N,T) — oo, where E; (-) is the conditional expectation at time t.
Combining the above derivation yields

1 = () o2 202
— Ay, jw — N(0,0’Z( S+ “))
VNT; Yot (1-7)? 147
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Lemma A.6 Under Assumptions (A1)-(A4) and as (N,T) — oo, then the following holds for
FD case,

(a). ) |
(b) ) | |
\/zlvT ; AysAtu —a N (o, 20y —151 j 10) au> |

Proof. (a) In order to prove this result, using the result (A.3), we have A2%y; = A?w;, and
Ay; = 6" + Awy, then we can obtain

T
1
NT Z Ayllt_?,AZthl

t=4
1 & 1 &
= — Z (6% + Awj_3) APwyq = — Z Aw;_3A’wy_1 + 0y (1)
NT v NT v
1 X
= N7 Z (Wi_g — Wi_y) (Wee1 — 2wy + Wi_3) + 0, (1)
t=4
1 & 2 & 1 &
/ / /
= — Zwt,gwt_l - — Zwt,gwt_g + — Zwt,gwt_g
NTt:4 NTt:4 NTt:4
1 & 2 < 1 &
_ﬁ Z W£74Wt_]_ + ﬁ Z W£74Wt_2 - ﬁ Z W£74Wt_3 + Op (].)
t=4 t=4 t=4
Ug 2 3 2
T o1_ (V=2v+1—-7"+29*—7) + 0, (1)
2
(1-7) o2
p 1+,Y u?

as (N,T) — oo.
(b) For this result, we have
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by the moment condition (4.7), also, we have

T

1

Var | — Ay' . Au

( ﬁNT; Yi-3 t)
1 Z

= N7 5 t:4E (AygngQutA2u;Ays_3)

T
1 2
= NT tz; E (Ay£_3A2utA2u2AYt—3) + NT ; E (Ay£_3A2utA2u;Ays_3) ,
for the first term,

T
1
E (Ay;_sA’wA*u;Ay,_3)
NT 2
1 T
= N7 Z E (Ay£73Et (A2utA2ug) Ayt_g,)
t=4
6o, ET: E[(6" + Aw,_,) (6" + Awe_s)]
= t—3 t—3
NT —
60202 120

(1-7)?* 147

and for the second term, we have

2
NT Z E (Ayé_SAQutAQu;Ays_g)

s>t
T
2
- NT Z E (Ay’/‘/*?’AQutAZuQHAYt—? + Ay;ef?)AzutAQu;HAYt—l)
t=4
9 T
= ﬁ Z [_2E (AYI/f73 (utu{f + ut_lué*l) Ayt—Q) —+ E (Ayl/ff?)utuéAyt—l)] +o (1)
t=4
202 L
- N% Z [74E (AY:&—SAthQ) + FE (Ayg—?,Athl)] +o0 (1)
t=4
2 2
N J\(IIILi [4E (87 + Awi_3) (8" + Awi2)) + E (87 + Awi_3) (8" + Awi 1)) +0(1)
t=4

60203  1— 1-—
— 0“052 7 aﬁ—iy%/ai—ko(l).
(1—7) 1+~ L+~

As a result, we have

T 2 4

1 2 -5y +10

Var | — E Ay, A%y | — O i ) 7
VNT = I+~

)
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and

T 2 4
2(yv*—=5v+10)o
\/tz:: 3A2ut HdN (0, ( 1+7 ) u),

as required. m

C Invalidity of using level lagged variable as IV for simple IV

estimation

Take for the simple IV estimator based on FD as an example, if we multiply both sides of (2.8)
by vyis (s <t — 2) and then take expectation, we obtain

E (yit—30%it) = VE (yit—3A%Yiz—1) -

Using the notations in (A.1), we have

E (yu—3A%yy) = E[(af +067(t—3) +wi—3) A%wy]
1 —
= E(wi—3A%wy) = 1 +§’YU%“

where w;; is an AR (1) process. Similarly, we have

E (yi—3D’yis—1) = E[(af +065(t—3) + wy Pwig-1]
1

-3) A
= E(wzt 3A Wy ¢ — 1) +z Z

—

As a result, we indeed have
v = [E (yit—sAQyi,tﬂ)rl E (yit,3A2yit) )

Consequently, based on FD transformation, the simple IV estimator using one level lag as
instrument can be given by

T
~FD 2 2
VIVievel = (Z Yi-sA Yt1> Zyé_?)A Yt
t=3 t=3
and

T -1 T
1 1
VNT (A1) R TAS —— ) yi3Au,
(’YIV,level (NT Yt 38 Y- 1) \/ﬁ s Yi-3 u

t=
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However, for the limit of ﬁ ST yh 3A%u;, we have E (ﬁ ST, yg_3A2ut) =0 and

T
1
Vv —_— ! . Au
W(\/ﬁzyt 3 ’f)

T
2
f ZE yt 3A UtA utyt 3) + NT (Z y£_3A2utA2u/SYS3>

t 3 s>t

_ Z E(a*+ 6 (t—3)+wi_3) (o + 6 (t — 3) + wy_3)]

NTE (yt 3A UtA ut+1yt 2 +yt 3A utA ut+2yt 1)
= 0(1%).

Similarly, for the limit of = ZtT:?) yi_3A%y; 1, we have

T
1 2: ! 2 _1_7 2
E(NT t73Yt_3A Yt—1> _1+70—u7

and the variance is given by
Var <1 ZT: A )
NT e Yi—38 Yi-1
T 2 2
(3] - [1534
1 < 2 r
= e Z E (yi_sA*wWi_1 AW, _1yi—3) + WE (Z yigAzwt_lAQW’slyS_;),)

s<t
2
1—7 o2
1+ Tul

Il
=
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for the first term, we have

N2T2 Z E * 4 (5* t— ) + Wtfg)/ A2Wt,1A2W2_1 (a* + 6 (t — 3) + Wtfg)]

— L ZE [a*’AQWt_lAzwg_la*] +

T
2 * *
eI E E [ A*wy_1 A?w,_ 6" (t — 3)]
=3

N27?
t=3

L ZE [wé_3A2wt_1A2w£_lwt_3]

T
2
Z E [OL*/A2Wt_1A2W£_1Wt_3] +—
N2T? P

+ N2T?
=3

1
+N2T2

T
Z E[87 (t — 3) A’wy_1 A*w)_ wy_s]

T
2 */ A2 2 *
;(t—?)) E [6% A%wy_1 A%w)_18%] + o2 2

T
1
= g 2 (=38 E [Awi 1 APwi ] 8" +o(1)
t=3

T
= 0O(—=]).
()
For the second term, similarly, we can obtain

N2T2 Z E[(a* + 8% (t —3) + wi_3) A?wy AW, (" + 6" (s — 3) + wy_3)]

s<t

= N2T2 Z 3) 8" B (A?w, 1 APW,_) 6" + 0 (1)

s<t
T
- O(N)’
T

as a result, as long as ; - 0 as N — oo, we have
T
2
Var <NT ;yg_gA yt1> - 0,

thus, the limit of ﬁ Zthg ygngQyt_l is not a constant and will be a random variable. For
simple IV estimator based on FOD transformation, if we use one level lag variables y;s (s < t)
as instrument, similar results can be obtained.

D Additional Simulation Results

Noting that under assumptions A1-A3, we have E (Ayisug)> = 0 for any s < t for model (2.6),

and E (AyiSAQUit) = 0 for any s < t — 2 for model (2.7). As a result, in addition to use level
lags as instruments, we can also use first difference lags as instruments for GMM estimators.
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Similarly, it is also obvious that we can use the level lagged dependent variable as instrument
for the simple IV estimation. Using the same DGP and specification of parameters in the
Monte Carlo simulation, we consider two extra estimators, one is the GMM estimation using
all available first differenced lags as instruments, and the other is simple IV estimation using
only one level lag as instrument. The simulation results are summarized in Table A1-A3.

There are several interesting findings in Table A1-A3. On the one hand, for the GMM
estimation using all available first differenced lags as instruments, we note that they perform
quite similarly to the GMM using all level lags in terms of median estimates and iqr, i.e., whether
using level lags or first differenced lags will not affect the performance of GMM estimation based
on either FOD or FD transformed model. On the other, even if the level lagged variables y;
also satisfy the orthogonal condition for (2.8) of simple IV estimation, however, it is shown
above that the simple IV estimation using one level lag for both FOD and FD transformed
model is invalid. This observation is confirmed from the simulation in Table A1-A3, where we
can observe the iqr for simple IV estimation increases with the increase of T' for a given N,
which is against the results when first differenced lag is used as instrument. The non-decreasing
observation of simple IV estimation using level lag is the evident that level lag can’t be used
as instrument for simple IV estimation for dynamic panel with both individual specific effects
and heterogenous time trend.
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