
       DEPARTMENT OF ECONOMICS WORKING PAPER SERIES 

GMM and IV Estimation of Dynamic Panel Models 
with Heterogeneous Trend 

Niansheng Tang 
Key Lab of Statistical Modeling and Data Analysis of Yunnan 

Province, Yunnan University 

Shiyun Cao 
Key Lab of Statistical Modeling and Data Analysis of Yunnan 

Province, Yunnan University 
School of Science – Guangxi University of Science and Technology 

Yonghui Zhang 
School of Economics – Renmin University of China 

Qiankun Zhou 
Louisiana State University 

     Working Paper 2019-01 
http://faculty.bus.lsu.edu/papers/pap19_01.pdf 

Department of Economics 
Louisiana State University 

Baton Rouge, LA 70803-6306 
http://www.bus.lsu.edu/economics/ 

http://faculty.bus.lsu.edu/papers/pap19_01.pdf


GMM and IV Estimation of Dynamic Panel Models

with Heterogeneous Trend∗

Niansheng Tanga, Shiyun Caoa,b, Yonghui Zhangc∗, Qiankun Zhoud

aKey Lab of Statistical Modeling and Data Analysis of Yunnan Province, Yunnan University
bSchool of Science, Guangxi University of Science and Technology

cSchool of Economics, Renmin University of China
dDepartment of Economics, Louisiana State University

This version December 17, 2018

Abstract

In this paper, we consider the generalized method of moment (GMM) and simple instru-
mental variable (IV) type estimation of dynamic panel data models with both individual-
specific effects and heterogeneous time trend. We consider the forward demeaning (FOD)
proposed by Hayakawa et al (2017) and the double first difference (FD) to remove both the
individual-specific effects and heterogeneous trend. We establish the asymptotic properties
of the GMM estimation of the lag coefficient and find that the GMM estimation using FOD
is asymptotically biased of order

√
T
N , while the GMM using FD is asymptotically biased

of order
√

T 3

N . We also establish the asymptotic unbiasedness of the simple IV estimation.
Monte Carlo simulations confirm our findings in this paper.
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1 Introduction

In this paper, we consider the dynamic panel data models with both individual-specific effects

and heterogeneous time trend. One of the unique features of the dynamic panel models is that

the presence of unobserved individual-specific effects creates the correlation between all past,

current and future observations (Hsiao (2014)). However, the individual-specific effects appears

linearly in the model. In principle, any differencing method that preserves the linear structure

of the model can eliminate the time-invariant individual-specific effects. After elimination

of individual-specific effects, another unique feature of panel dynamic models is that lagged

variables can be used to create orthogonal conditions. As a result, generalized method of

moments (GMM) estimator or instrumental variables (IV) estimator can be adapted to estimate

the parameters in the model. However, these linear transformation may not remove the time

trend at the same time, and dynamic panel with both individual effects and time trend needs

special treatment.

In this paper, we consider the forward demeaning (FOD) method of Hayakawa et al. (2017)

and the double first difference (FD) (Wansbeek and Knaap (1999) and Hayakawa and Ge

(2017)) to simultaneously remove the individual specific effects as well as the heterogenous trend

in dynamic panels. Once the individual effects and the time trend are removed, we propose

the Alvarez and Arellano (2003) type GMM estimator and simple IV estimator for the lag

coefficient. It is shown in the paper that, the GMM estimator based on FOD is consistent and

asymptotically normally distributed, but it is asymptotically biased of order
√

T
N , while for the

GMM estimator based on FD is asymptotically normally distributed, but it is asymptotically

biased of order
√

T 3

N . We also show that the simple IV estimator based on either FOD or FD

transformed model is asymptotically unbiased and asymptotically normally distributed. The

finite sample properties of both the GMM and IV estimation are examined through Monte

Carlo simulations, and we find that the simulation results confirm our theoretical findings in

the paper.

The rest of the paper is organized as follows. Section 2 sets up the basic model and discusses

the approaches to eliminate both the individual effects and time trend. The GMM and simple

IV estimation together with their associated asymptotics are provided in Section 3 and Section

4, respectively. Section 5 presents the finite sample properties of the GMM and IV estimation

through Monte Carlo simulations, and Concluding remarks are in section 6. All mathematical

derivations and additional simulation results are relegated to the Appendix.

2



2 Model

2.1 Model

We consider a simple dynamic panel model of the form

yit = γyi,t−1 + αi + δit+ uit, i = 1, . . . , N ; t = 1, . . . , T, (2.1)

where |γ| < 1 and uit has zero mean given αi, δi, yi0, . . . , yi,t−1. For ease of notations, we assume

that yi0 is observed. This model has been widely used in empirical studies in economics, to

name a few, see Hegwood and Papell (2007) and Conti (2014), among others.

For model (2.1), the goal is to estimate the lag coefficient γ with the observed yit when both

N and T are large. To this end, we make the following assumptions:

Assumption 1 (A1). {uit} are independent and identically distributed (i.i.d) across time

and individuals and independent of yi0, αi and δi, with E (uit) = 0, V ar (uit) = σ2
u, and finite

moments up to fourth order.

Assumption 2 (A2). Individual-specific effects αi are i.i.d across individuals with E (αi) =

0, V ar (αi) = σ2
α, and finite fourth order moment.

Assumption 3 (A3). The coefficient for the trend δi are i.i.d across individuals and

independent of αi, with E (δi) = 0, V ar (δi) = σ2
δ , and finite fourth order moment.

Assumption 4 (A4). The initial observations yi0 satisfy

yi0 =
αi

1− γ
− γδi

(1− γ)2
+ wi0,

where wi0 is independent of αi and δi, and i.i.d with the steady state distribution of the

homogeneous process, so that wi0 =
∑∞

s=0 γ
jui,−s.

The above assumptions are quite standard in the literature for dynamic panel models, e.g.,

Alvarez and Arellano (2003), Hayakawa (2009). It should be noted that the homoskedasticity as-

sumption in (A1) is for simplicity, all results obtained below can be extended to heteroskedastic

errors with extra notations. The assumption of initial condition on yi0 is also made on Hayakawa

and Nogimori (2010).

2.2 Elimination of Individual Effects and Time Trend

For model (2.1), stacking the observations over time period yields the vector form of

yi = γyi,−1 + αi1T + δiτT + ui, i = 1, . . . , N, (2.2)

where τT = (1, 2, . . . , T )′ .
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For the above model, we consider the following two types of transformation to simultaneously

remove the individual-specific effects as well as the heterogeneous time trend. The first approach

is the so called forward demeaning (FOD, for short)1 (Hayakawa et al (2017)). More specifically,

for model (2.2), let Tj = T − j and define the following matrix

FT2×T = CT2



1 2(−2T2)
T1T2

2(−2T2+3)
T1T2

2(−2T2+6)
T1T2

· · · · · · 2(−2T2+3T3)
T1T2

2(−2T2+3T2)
T1T2

0 1 2(−2T3)
T2T3

2(−2T3+3)
T2T3

· · · · · · 2(−2T3+3T4)
T2T3

2(−2T3+3T3)
T2T3

0 0 1 2(−2T4)
T3T4

· · · · · · 2(−2T4+3T5)
T3T4

2(−2T4+3T4)
T3T4

...
... 0

. . . . . . . . .
...

...
...

...
...

. . . 1 2(−2·2)
3·2

2(−4+3)
3·2

2(−4+6)
3·2

0 0 · · · · · · 0 1 2(−2)
2·1

2(−2+3)
2·1



= {fst} =


0 if s > t

ct = 1 +O
(

1
T−t

)
if s = t

2cs[−2(T−s−1)+3(t−s−1)]
(T−s)(T−s−1) = −O

(
1

T−s

)
+O

(
t−s

(T−s)2

)
if s < t

, (2.3)

with CT2 = diag (c1, c2, . . . , cT−2) and c2t = (T−t−1)(T−t)
(T−t+1)(T−t+2) . Then we have2

FT2×T (αi1T + δiτT ) = 0, (2.4)

and multiplying both sides of (2.2) by FT2×T yields

y(f)
i = γy(f)

i,−1 + u(f)
i , i = 1, . . . , N, (2.5)

where y(f)
i = FT2×Tyi, y(f)

i,−1 = FT2×Tyi,−1 and u(f)
i = FT2×Tui. The t-th element of the above

transformed model is given by

y
(f)
it = γy

(f)
it−1 + u

(f)
it , i = 1, . . . , N ; t = 1, . . . , T − 2, (2.6)

where

y
(f)
it = fttyit + ft,t+1yi,t+1 + · · ·+ ft,T yiT ,

y
(f)
i,t−1 = fttyi,t−1 + ft,t+1yi,t + · · ·+ ft,T yi,T−1,

u
(f)
it = fttuit + ft,t+1ui,t+1 + · · ·+ ft,TuiT .

The second approach is the so called first difference (FD, for short) (Anderson and Hsiao

(1981, 1982), Arellano and Bond (1991), Wansbeek and Knaap (1999)). More specifically, for
1It should be noted that the usual FOD (Alvarez and Arellano (2003), Arellano and Bover (1995)) can’t

remove the time trend in model (2.1).
2A formal derivation is given in the appendix.
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model (2.1), the FD yields

∆yit = γ∆yi,t−1 + δi + ∆uit, i = 1, . . . , N ; t = 2, . . . , T, (2.7)

with ∆yit = yit − yi,t−1, and another FD will eliminate δi from (2.7) as well

∆2yit = γ∆2yi,t−1 + ∆2uit, i = 1, . . . , N ; t = 3, . . . , T, (2.8)

where ∆2yit = ∆yit −∆yit−1.

3 GMM Estimation and Their Asymptotics

In this section, we consider the GMM estimation of the lag coefficient γ based on either the

FOD or FD approach to eliminate individual-specific effects and the heterogeneous time trend,

and we also establish the asymptotics for the GMM estimation.

3.1 GMM Estimation Based on FOD

For model (2.6), under Assumptions (A1)-(A4), we have

E
(
yisu

(f)
it

)
= 0, for any s < t, (3.1)

thus, we can use (yi0, . . . , yit−1) as IVs for model (2.6).

We notice that model (2.6) can be rewritten in vector form as

y(f)
t = γy(f)

t−1 + u(f)
t , t = 1, . . . , T − 2, (3.2)

where y(f)
t =

(
y

(f)
1t , y

(f)
2t , . . . , y

(f)
Nt

)′
, y(f)

t−1 =
(
y

(f)
1,t−1, y

(f)
2,t−1, . . . , y

(f)
N,t−1

)′
and u(f)

t =
(
u

(f)
1t , u

(f)
2t , . . . , u

(f)
Nt

)′
.

Define yt = (y1t, y2t, . . . , yNt)
′ and Pt−1 = Zt−1

(
Z′t−1Zt−1

)−1 Z′t−1 with Zt−1 = (y0,y1, . . . ,yt−1)

for t = 1, . . . , T − 2, then the GMM of γ based on (3.2) using Zt−1 as the instruments is given

by (Alvarez and Arellano (2003))

γ̂FODGMM =

(
T−2∑
t=1

y(f)′
t−1Pt−1y

(f)
t−1

)−1 T−2∑
t=1

y(f)′
t−1Pt−1y

(f)
t . (3.3)

3.2 GMM Estimation Based on FD

For the first differenced model (2.8), under Assumptions (A1)-(A4), we have the following

orthogonal conditions,

E
(
yis∆2uit

)
= 0, for s < t− 2, (3.4)
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i.e., we can use (yi0, yi1, . . . , yi,t−3) as IV for (2.8).

It can also be noted that model (2.8) can be rewritten in vector form as

∆2yt = γ∆2yt−1 + ∆2ut, t = 3, . . . , T ; (3.5)

where ∆2yt =
(
∆2y1t,∆2y2t, . . . ,∆2yNt

)′
, ∆2yt−1 =

(
∆2y1t−1,∆2y2t−1, . . . ,∆2yNt−1

)′ and

∆2ut =
(
∆2u1t,∆2u2t, . . . ,∆2uNt

)′
, then the GMM estimation of γ based on (3.5) is given by

(Alvarez and Arellano (2003))

γ̂FDGMM =

(
T∑
t=3

∆2y′t−1Pt−3∆2yt−1

)−1 T∑
t=3

∆2y′t−1Pt−3∆2yt, (3.6)

where Pt−3 = Zt−3

(
Z′t−3Zt−3

)−1 Z′t−3 with Zt−3 = (y0,y1, . . . ,yt−3) .

3.3 Asymptotics of the GMM Estimator Based on FOD

For the GMM estimator (3.3), we note that

√
NT

(
γ̂FODGMM − γ

)
=

(
1
NT

T−2∑
t=1

y(f)′
t−1Pt−1y

(f)
t−1

)−1
1√
NT

T−2∑
t=1

y(f)′
t−1Pt−1u

(f)
t , (3.7)

and it is shown by Lemma A.3 in the appendix that

1
NT

T−2∑
t=1

y(f)′
t−1Pt−1y

(f)
t−1 →p

σ2
u

1− γ2
, (3.8)

and
1√
NT

T−2∑
t=1

y(f)′
t−1Pt−1u

(f)
t →d N

(
− σ2

u

1− γ

√
T

N
,

σ4
u

1− γ2

)
. (3.9)

under restriction T
N → c 6= 0 <∞ as (N,T )→∞.

Substituting (3.8) and (3.9) into (3.7) yields the limiting distribution of γ̂FODGMM , which is

summarized in the following theorem.

Theorem 1 For the GMM estimator (3.3), under Assumptions (A1)-(A4) and as (N,T )→∞
with T

N → c 6= 0 <∞, we have

√
NT

(
γ̂FODGMM − γ

)
→d N

(
− (1 + γ)

√
c, 1− γ2

)
. (3.10)

Remark 1 From (3.10), we can observe that the GMM estimator (3.3) is consistent as long

as N →∞ since

γ̂FODGMM − γ = −(1 + γ)
N

+Op

(
(NT )−1/2

)
,
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but it is asymptotically biased of order
√

T
N if T

N → c 6= 0 < ∞ as (N,T ) → ∞. We can also

note that the asymptotic distribution of the GMM estimator (3.3) for dynamic model with a

trend is identical to the GMM estimator for dynamic model without a trend as in Alvarez and

Arellano (2003). The intuition of this observation is that the instruments set for the GMM

estimation of dynamic panel with or without a time trend are identical, so there will be no

efficiency loss in the estimation.

3.4 Asymptotics of the GMM Estimator based on FD

For the GMM estimator (3.6), we note that

√
NT

(
γ̂FDGMM − γ

)
=

(
1
NT

T∑
t=3

∆2y′t−1Pt−3∆2yt−1

)−1
1√
NT

T∑
t=3

∆2y′t−1Pt−3∆2ut, (3.11)

and it is shown by Lemma A.4 in the appendix that

1
NT

T∑
t=3

∆2y′t−1Pt−3∆2yt−1 →p
(1− γ)3

1 + γ
σ2
u, (3.12)

and

1√
NT

T∑
t=3

∆2y′t−1Pt−3∆2ut →d N

(
−(4− γ)σ2

u

2

√
T 3

N
,
2 (1− γ)4 (3− γ)σ4

u

1 + γ

)
, (3.13)

under the restriction that T 3

N → κ 6= 0 <∞ as (N,T )→∞.

Substituting (3.12) and (3.13) into (3.11) yields the limiting distribution of γ̂FDGMM , which

is summarized in the following theorem.

Theorem 2 For the GMM estimator (3.6), under Assumptions (A1)-(A4) and as (N,T )→∞
with T 3

N → κ 6= 0 <∞, we have

√
NT

(
γ̂FDGMM − γ

)
→d N

(
−(4− γ) (1 + γ)

2 (1− γ)3
√
κ,

2(1 + γ) (3− γ)
(1− γ)2

)
, (3.14)

Remark 2 From (3.14), we can observe that the GMM estimator (3.6) is no long consistent

if T
N → c 6= 0 <∞ as (N,T )→∞ since

γ̂FDGMM − γ = Op

(
T

N

)
,

and we need N much larger than T to reach consistency. However, even if T
N → 0 but T 3

N →
κ 6= 0 < ∞ as (N,T ) → ∞, the GMM estimator (3.6) is consistent but it is asymptotically

biased of order
√
κ. It is also obvious that the asymptotic variance of (3.14) is much larger than

that of (3.10), thus we can claim that (3.6) is not as efficient as (3.3).
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Remark 3 Note that based on FOD transformation, there exist E
(

∆yisu
(f)
it

)
= 0 for any

s < t, and based on FD, we also have E
(
∆yis∆2uit

)
= 0 for any s < t− 2. Consequently, in

addition to using level lags as instruments, we can also use first difference lags as instruments

for GMM estimators. These estimators will be investigated and compared through simulation

in the appendix.

4 Simple IV Estimation and Their Asymptotics

For model (2.6), under Assumptions (A1)-(A4), we have

E
(

∆yisu
(f)
it

)
= 0, for any s < t, (4.1)

since u(f)
it is a combination of all future errors since time t, thus the lagged variables are legiti-

mate instruments. As a result, a simple IV estimator of γ based on the FOD transformation is

given by (Hsiao and Zhou (2017))

γ̂FODIV =

(
T−2∑
t=2

∆y′t−1y
(f)
t−1

)−1 T−2∑
t=2

∆y′t−1y
(f)
t . (4.2)

For the asymptotics of (4.2), we note that

√
NT

(
γ̂FODIV − γ

)
=

(
1
NT

T−2∑
t=2

∆y′t−1y
(f)
t−1

)−1
1√
NT

T−2∑
t=2

∆y′t−1u
(f)
t , (4.3)

and it is shown in Lemma A.5 in the appendix that as (N,T )→∞, we have

1
NT

T−2∑
t=2

∆y′t−1y
(f)
t−1 →p

σ2
u

1 + γ
, (4.4)

and
1√
NT

T−2∑
t=2

∆y′t−1u
(f)
t →d N

(
0, σ2

u

(
σ2
δ

(1− γ)2
+

2σ2
u

1 + γ

))
. (4.5)

Substituting (4.4) and (4.5) into (4.3) yields the asymptotic distribution of (4.2) as follows.

Theorem 3 Under Assumptions (A1)-(A4), as (N,T )→∞, for the simple IV estimator (4.2)

of dynamic panels with heterogeneous trend using FOD to eliminate the individual effects and

the trend, we have

√
NT

(
γ̂FODIV − γ

)
→d N

(
0,
σ2
δ

σ2
u

(1 + γ)2

(1− γ)2
+ 2 (1 + γ)

)
. (4.6)
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Remark 4 From the above limiting distribution, it is obvious that the simple IV estimator

(4.2) based on FOD is asymptotically unbiased, and the asymptotic unbiasedness is independent

of the way of how (N,T ) go to infinity.

For the first differenced model (2.8), under Assumptions (A1)-(A4), we have the following

orthogonal conditions,

E
(
∆yis∆2uit

)
= 0, for s < t− 2, (4.7)

i.e., we can use (∆yi1, . . . ,∆yi,t−3) as IV for (2.8). Thus, a simple IV estimator of γ based on

the FD transformation is given by (Anderson and Hsiao (1981, 1982), Hsiao and Zhou (2017))

γ̂FDIV =

(
T∑
t=4

∆y′t−3∆2yt−1

)−1 T∑
t=4

∆y′t−3∆2yt. (4.8)

Similarly, we have

√
NT

(
γ̂FDIV − γ

)
=

(
1
NT

T∑
t=4

∆y′t−3∆2yt−1

)−1
1√
NT

T∑
t=4

∆y′t−3∆2ut, (4.9)

and it is shown in Lemma A.6 in the appendix that as (N,T )→∞, we have

1
NT

T∑
t=4

∆y′t−3∆2yt−1 →p
(1− γ)2

1 + γ
σ2
u, (4.10)

and
1√
NT

T∑
t=4

∆y′t−3∆2ut →d N

(
0,

2
(
γ2 − 5γ + 10

)
σ4
u

1 + γ

)
. (4.11)

Substituting (4.10) and (4.11) into (4.9) yields the asymptotic distribution of (4.8) as follows.

Theorem 4 Under Assumptions (A1)-(A4), as (N,T )→∞, for the simple IV estimator (4.8)

of dynamic panels with heterogeneous trend using FD to eliminate the individual effects and the

trend, we have
√
NT

(
γ̂FDIV − γ

)
→d N

(
0,

2 (1 + γ)
(
γ2 − 5γ + 10

)
(1− γ)4

)
. (4.12)

Remark 5 Similar to the FOD case, the Anderson-Hsiao simple IV estimator (4.8) based on

FD is asymptotically unbiased, and the asymptotic unbiasedness is independent of the way of

how (N,T ) go to infinity. It is also of interest to compare the efficiency of these two estimators,

from (4.6) and (4.12), the ratio of these two asymptotic variance is given by

σ2
δ
σ2
u

(1+γ)2

(1−γ)2 + 2 (1 + γ)
2(1+γ)(γ2−5γ+10)

(1−γ)4
=

σ2
δ
σ2
u

(1 + γ) (1− γ)2 + 2 (1− γ)4

2 (γ2 − 5γ + 10)
,

9



as a result, one condition that the simple IV based on FOD is more efficient than the IV based

on FD is that
σ2
δ

σ2
u

<
2
(
γ2 − 5γ + 10

)
− 2 (1− γ)4

(1 + γ) (1− γ)2
.

Remark 6 We notice that level lagged variables yis also satisfy the orthogonal condition for

(2.6) and (2.8), however, it is shown in the appendix that the simple IV estimation using

one level lag for both FOD and FD model is invalid, and the simulation results confirm our

theoretical findings.

5 Monte Carlo Simulation

In this section, we investigate the finite sample properties for GMM estimation and simple IV

estimation for dynamic panels with individual effects and time trend using either FOD or FD

transformation discussed in the previous sections. We consider the following data generating

process (DGP)

yit = γyi,t−1 + αi + δit+ uit, (5.1)

we assume that αi ∼ IIDN (0, 1) , δi ∼ IIDU (−1, 1) , and uit ∼ IIDN (0, 1) for all i and t. For

the values of γ, we let γ = 0.2, 0.5 and 0.7. We consider the combinations of N = 200, 500, 800

and T = 25, 50, 100. The number of replication is set at 2000 times.

For the above DGP, we use both the FOD and FD transformations to eliminate the individ-

ual effects, αi, and time trend, δit. We consider two types of GMM estimators for estimating

the lag coefficient γ: GMM based FOD and GMM based on FD using all available level lags,

as well as two types of simple IV estimators using only one first differenced lag. We calculate

median of estimates, median-bias as well as iqr (inter-quantile rage) for these estimators. The

simulation results are summarized in Table 1-3.3

Several important findings can be observed from the simulation results. First, we find that

the GMM estimator based on FOD and using all level lags behaves quite well, the median bias

is almost negligible when N or T is large, and the iqr reduces quite rapidly with the increase

of either N or T. We can also observe that the iqr for the GMM estimation based FOD is quite

close to those obtained in Alvarez and Arellano (2003, P1134-1135). Second, the GMM based

on FD using all level lags shows quite significant bias, but the bias decreases with the decrease
3Additional simulation results of the GMM using first differenced lagges as IVs, and simple IV using level

lags as IV are provided in the appendix.
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of the magnitude of T
N (i.e., N increases faster than T ). Finally, for simple IV estimation based

on both FOD and FD using only one first differenced lag as IV, the bias is almost negligible,

and the iqr also decreases with the increase of either N or T, which is the evident that the

simple IV is asymptotically unbiased and consistent. In all, we conclude that the findings in

the simulation confirm our theoretical findings in the paper.

6 Conclusion

In this paper, we consider both the FOD and FD transformations to eliminate the individual

specific effects as well as the stochastic time trend in dynamic panels. We also consider the GMM

and simple IV estimation based on either FOD or FD transformation using either all available

instruments or only one instrument. Asymptotics for both GMM and simple IV estimation are

established in the paper. Monte Carlo simulations confirm our theoretical findings in the paper.
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Appendix
This Appendix includes the mathematical proofs and additional simulation results that are

omitted in the main paper.

A Derivation of (2.4)

To show how the transformation matrix FT2×T removes the individual effects as well as the
time trend, let’s look at the multiplication of the t-th row of FT2×T with (αi1T + δiτT ) , which
is given by

(ft1, ft2, . . . , ftT ) (αi1T + δiτT )

= ctαi

(
1 + 2

T∑
s=t+1

[−2 (T − t− 1) + 3 (s− t− 1)]
(T − t) (T − t− 1)

)

+ctδi

(
t+ 2

T∑
s=t+1

[−2 (T − t− 1) + 3 (s− t− 1)]
(T − t) (T − t− 1)

s

)
, (A.1)

where the first term of (A.1) can be shown

T∑
s=t+1

[−2 (T − t− 1) + 3 (s− t− 1)]
(T − t) (T − t− 1)

=
T∑

s=t+1

−2 (T − t− 1)
(T − t) (T − t− 1)

+
3
∑T

s=t+1 (s− t− 1)
(T − t) (T − t− 1)

= −2 +
3

(T − t) (T − t− 1)
(T − t− 1) (T − t)

2

= −1
2
,

which in turn gives

1 + 2
T∑

s=t+1

[−2 (T − t− 1) + 3 (s− t− 1)]
(T − t) (T − t− 1)

= 0.

Also, for the second term of (A.1), we have

T∑
s=t+1

[−2 (T − t− 1) + 3 (s− t− 1)]
(T − t) (T − t− 1)

s =
T∑

s=t+1

[−2T − t− 1 + 3s]
(T − t) (T − t− 1)

s

=
(−2T − t− 1)

(T − t) (T − t− 1)
(T − t) (T + t+ 1)

2
+
T (T + 1) (2T + 1)− t (t+ 1) (2t+ 1)

2 (T − t) (T − t− 1)

=
T (T + 1) (2T + 1)− t (t+ 1) (2t+ 1)− (2T + t+ 1) (T − t) (T + t+ 1)

2 (T − t) (T − t− 1)

=
−t3 − t2 + 2Tt2 + 2Tt− tT 2 − tT

2 (T − t) (T − t− 1)

= −t (T − t)2 + t− T
2 (T − t) (T − t− 1)

= − t
2
,
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which in turn yields

t+ 2
T∑

s=t+1

[−2 (T − t− 1) + 3 (s− t− 1)]
(T − t) (T − t− 1)

s = 0.

As a result, the transformation matrix FT2×T indeed removes the individual-specific effects and
the time trend of model (2.2) simultaneously.

B Derivation of the Asymptotics of the GMM and IV Estima-

tion

Let ‖A‖ =
√
tr (AA′) denote the Frobenius norm, λmin (A) to denote the minimum eigenvalue

of A, and λmax (A) to denote the maximum eigenvalue of A. We also let C denote a generic
finite constant which doesn’t depend on N or T , and whose value may vary case by case.

For model (2.1), under strict stationarity of yit, we have

yit (1− γL) = αi + δit+ uit,

or
yit =

αi
1− γ

+ δi
t

1− γL
+

uit
1− γL

,

where it can be shown that t
1−γL = t

1−γ −
γ

(1−γ)2 , i.e.,

yit = α∗i + δ∗i t+ wit, (A.1)

where α∗i = αi
1−γ − δi

γ

(1−γ)2 , δ
∗
i = δi

1−γ and wit is a AR(1) process with4

wit = γwit−1 + uit =
∞∑
s=0

γsuit−s. (A.2)

4By definition, it can be verified that

wit = yit −
αi

1− γ + δi
γ

(1− γ)2
− δi

1− γ t,

and

wit−1 = yit−1 −
αi

1− γ + δi
γ

(1− γ)2
− δi

1− γ (t− 1) ,

then by substituting the above two terms into

wit = γwit−1 + uit,

which in turn yields

yit = αi + δit+ γyit−1 + uit.
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It is obvious that for the FD approach to remove the individual effects as well as the trend,
we have

∆2yit = ∆2wit, (A.3)

and for the FOD transformation, we have

y
(f)
it = w

(f)
it , (A.4)

where
w

(f)
i,t = fttwit + ft,t+1wi,t+1 + · · ·+ ft,TwiT ,

with fts (s ≥ t) is given by (2.3).
Now let’s turn to the lemmas, which are needed for the derivation of the results in the main

paper.

Lemma A.1 Let κ3,u and κ4,u be the third and fourth order cumulants of uit. Also, let dt
and ds be N × 1 vectors containing the diagonal elements of Pt = Zt (Z′tZt)

−1 Z′t and Ps =
Zs (Z′sZs)

−1 Z′s, respectively, so that tr(Pt) = d′t1N = t and tr(Ps) = d′s1N = s, and d′tds ≤
min (t, s) , then under Assumption (A1), for l ≥ r > t, p ≥ q > s and t ≥ s

Cov
(
u′lPtur,u′pPsuq

)
=


κ4,ud′tds + 2σ4

us ≤
(
κ4,u + 2σ4

u

)
s if l = r = p = q

σ4
us if l = p 6= r = q

κ3,uE (d′tpsuq) if l = r = p 6= q < t

0 otherwise

and |E (d′tpsuq)| ≤ (st)1/2 σu.

Proof can be found at Alvarez and Arellano (2003). The above result holds for models with
trend is because the trace and rank of Pt and Ps remain the same for models without trend,
so the derivation of Alvarez and Arellano (2003) can be applied here.

Lemma A.2 Let Assumptions (A1)-(A4) hold, then the following holds as (N,T )→∞,

1
NT

T−2∑
t=1

w′t−1Pt−1wt−1 →p
σ2
u

1− γ2
.

Proof. To derive this result, similar to Lee et al. (2017), we notice that

1
NT

T−2∑
t=1

w′t−1Pt−1wt−1 =
1
NT

T−2∑
t=1

w′t−1wt−1 −
1
NT

T−2∑
t=1

w′t−1 (IN −Pt−1) wt−1, (A.5)

and wt−1 = yt−1 − α∗ − δ∗ (t− 1) where α∗ = (α∗1, . . . , α
∗
N )′ with α∗i = αi

1−γ − δi
γ

(1−γ)2 and

δ∗ = (δ∗1, . . . , δ
∗
N )′ with δ∗i = δi

1−γ .
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Let µt−1 be the N × 1 vector of errors of the population linear projection of α∗ on Zt−1,

then we have

µt−1 = α∗ − Zt−1at−1 with at−1 =
[
E
(
zit−1z′it−1

)]−1
E (zit−1α

∗
i ) . (A.6)

Similarly, let εt−1 be the N × 1 vector of errors of the population linear projection of δ∗ on
Zt−1, then we have

εt−1 = δ∗ − Zt−1bt−1 with bt−1 =
[
E
(
zit−1z′it−1

)]−1
E (zit−1δ

∗
i ) , (A.7)

where zit−1 = (yi0, . . . , yi,t−1)′ .
In order to derive the properties of µt−1 and εt−1, by using the decomposition, we have

wit = γwit−1 + uit,

yit = α∗i + δ∗i t+ wit,

zit−1 = α∗i1t + δ∗i τ t−1 + w(t−1)
i ,

where τ t−1 = (0, 1, . . . , t− 1)′ and w(t−1)
i = (wi0, . . . , wi,t−1)′ with wi,t−1 is an AR(1) process.

Let Ωt be the t × t autoregressive matrix of wit whose (j, k)-th element is given by γ|j−k|

1−γ2 for
j, k = 0, 1, . . . , t− 1, then we have

E
(
zit−1z′it−1

)
= σ2

α∗1t1
′
t + σ2

δ∗τ t−1τ
′
t−1 + σ2

uΩt,

E (zit−1α
∗
i ) = σ2

α∗1t,

E (zit−1δ
∗
i ) = σ2

δ∗τ t−1,

where σ2
α∗ = E

(
α∗2i
)

and σ2
δ∗ = E

(
δ∗2i
)
.

To get an exact expression of the inverse of E
(
zit−1z′it−1

)
, we notice that

E
(
zit−1z′it−1

)−1

=
(
σ2
α∗1t1

′
t + σ2

δ∗τ t−1τ
′
t−1 + σ2

uΩt

)−1

=
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 −
σ2
α∗
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t1′t
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1

1 + σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t
,

and

(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 = σ−2
u

(
κ1τ t−1τ

′
t−1 + Ωt

)−1 = σ−2
u

[
Ω−1
t −

κ1Ω−1
t τ t−1τ

′
t−1Ω

−1
t

1 + κ1τ ′t−1Ω
−1
t τ t−1

]
,

(A.8)

where κ1 = σ2
δ∗
σ2
u

. Then we have

1′t
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t = σ−2
u 1′tΩ

−1
t 1t −

σ−2
u κ1

(
1′tΩ

−1
t τ t−1

)2
1 + κ1τ ′t−1Ω

−1
t τ t−1

= O (t) , (A.9)
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since it can be shown that

Ωt =
1

1− γ2


1 γ · · · γt−1

γ 1 · · · γt−2

...
...

. . .
...

γt−1 γt−2 · · · 1

 , and Ω−1
t =



1 −γ 0 · · · 0

−γ 1 + γ2 −γ · · · 0
...

. . . . . . . . .
...

0 · · · −γ 1 + γ2 −γ
0 · · · 0 −γ 1


,

which in turn gives

Ω−1
t 1t = (1− γ) (1, 1− γ, . . . , 1− γ, 1)′ ,

Ω−1
t τ t−1 =

(
−γ, (1− γ)2 , 2 (1− γ)2 . . . , (t− 2) (1− γ)2 , (t− 1) (1− γ) + γ

)′
,

then it is obvious that

τ ′t−1Ω
−1
t τ t−1 = O

(
t3
)

and 1′tΩ
−1
t τ t−1 = O

(
t2
)
. (A.10)

As a result, we have

at−1 =
(
σ2
α∗1t1

′
t + σ2

δ∗τ t−1τ
′
t−1 + σ2

uΩt

)−1
σ2
α∗1t

=
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1
σ2
α∗1t

−
σ4
α∗
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t1′t
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t

1 + σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t

=
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1
σ2
α∗1t ×

(
1−

σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t

1 + σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t

)

=
σ2
α∗
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t

1 + σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t
, (A.11)

and

bt−1 =
(
σ2
δ∗τ t−1τ

′
t−1 + σ2

α∗1t1
′
t + σ2

uΩt

)−1
σ2
δ∗τ t−1

=
(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
σ2
δ∗τ t−1

−
σ2
δ∗
(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1τ

′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
σ2
δ∗τ t−1

1 + σ2
δ∗τ
′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1

=

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
σ2
δ∗τ t−1

1 + σ2
α∗τ

′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1

. (A.12)

Consequently, given the above two coefficients, we have, for the ith element of µt−1,

µit−1 = α∗i − z′it−1at−1 = α∗i
(
1− 1′tat−1

)
− δ∗i τ ′t−1at−1 −w(t−1)′

i at−1.
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For E
(
µ2
it−1

)
, under Assumptions (A1)-(A3), we have

E
(
µ2
it−1

)
= σ2

α∗
(
1− 1′tat−1

)2 + σ2
δ∗
(
τ ′t−1at−1

)2 + a′t−1E
(
w(t−1)
i w(t−1)′

i

)
at−1, (A.13)

where E
(
w(t−1)
i w(t−1)′

i

)
= σ2

uΩt.

For the first term, we notice that

1− 1′tat−1 = 1−
σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t

1 + σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t

=
1

1 + σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t

= O

(
1
t

)
,

by using the result (A.11), consequently, we have

σ2
α∗
(
1− 1′tat−1

)2 = O

(
1
t2

)
. (A.14)

For the second term of (A.13),

σ2
δ∗
(
τ ′t−1at−1

)2 = O

(
1
t4

)
, (A.15)

since

τ ′t−1at−1 =
σ2
α∗τ

′
t−1

(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1t
1 + σ2

α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t

=
σ2
α∗σ
−2
u 1′tΩ

−1
t τ t−1(

1 + κ1τ ′t−1Ω−1
t τ t−1

) (
1 + σ2

α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t
) = O

(
1
t2

)
,

by using the results (A.8)-(A.10).
Finally, for the third term of (A.13), we have

a′t−1E
(
w(t−1)
i w(t−1)′

i

)
at−1 =

σ2
α∗1
′
t

(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1
σ2
uΩt

(
σ2
δ∗τ t−1τ

′
t−1 + σ2

uΩt

)−1 1′t(
1 + σ2

α∗1
′
t

(
σ2
δ∗τ t−1τ ′t−1 + σ2

uΩt

)−1 1t
)2

= O

(
1
t

)
, (A.16)

by using the similar argument above.
As a result, combining (A.14)-(A.16) we have

E
(
µ2
it−1

)
= O

(
1
t

)
. (A.17)
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Similarly, for the residuals of projection on δ∗, we have, for the ith element of εt−1,

εit−1 = δ∗i − z′it−1bt−1 = −α∗i1′tbt−1 + δ∗i
(
1− τ ′t−1bt−1

)
−w(t−1)′

i bt−1.

For E
(
ε2it−1

)
, we note

E
(
ε2it−1

)
= σ2

α∗
(
1′tbt−1

)2 + σ2
δ∗
(
1− τ ′t−1bt−1

)2 + b′t−1E
(
w(t−1)
i w(t−1)′

i

)
bt−1. (A.18)

For the first term σ2
α∗ (1′tbt−1)2 , we notice that

1′tbt−1 =
1′t
(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
σ2
δ∗τ t−1

1 + σ2
α∗τ

′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1

=
σ2
δ∗σ
−2
u 1′tΩ

−1
t τ t−1(

1 + σ2
α∗τ

′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1

) (
1 + κ21′tΩ

−1
t 1t

)
= O

(
1
t2

)
,

by using the identity

1′t
(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1 = σ−2

u 1′tΩ
−1
t τ t−1−

σ−2
u κ21′tΩ

−1
t 1t1′tΩ

−1
t τ t−1

1 + κ21′tΩ
−1
t 1t

= σ−2
u

1′tΩ
−1
t τ t−1

1 + κ21′tΩ
−1
t 1t

,

and

τ ′t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1 = σ−2

u τ ′t−1Ω
−1
t τ t−1 −

σ−2
u κ2

(
1′tΩ

−1
t τ t−1

)2
1 + κ21′tΩ

−1
t 1t

= O
(
t3
)
,

where κ2 = σ2
α∗
σ2
u
. Consequently, we have

σ2
α∗
(
1′tbt−1

)2 = O

(
1
t4

)
. (A.19)

For the second term of (A.18), we notice that

1− τ ′t−1bt−1 = 1−
τ ′t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
σ2
δ∗τ t−1

1 + σ2
δ∗τ
′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1

=
1

1 + σ2
δ∗τ
′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1

= O

(
1
t3

)
. (A.20)
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Finally, for the third term of (A.18), we have

b′t−1E
(
w(t−1)
i w(t−1)′

i

)
bt−1 = b′t−1σ

2
uΩtbt−1 ≤ Cb′t−1bt−1

≤ C
τ ′t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1 (
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1(

1 + σ2
α∗τ

′
t−1

(
σ2
α∗1t1

′
t + σ2

uΩt

)−1
τ t−1

)2

= O

(
1
t3

)
. (A.21)

As a result, combining (A.19)-(A.21) we have

E
(
ε2it−1

)
= O

(
1
t3

)
. (A.22)

Now let’s turn to equation (A.5), by definition of (A.6) and (A.7),

wt−1 = yt−1 −α∗ − δ∗ (t− 1) = yt−1 −
(
Zt−1at−1 + µt−1

)
− (Zt−1bt−1 + εt−1) (t− 1) ,

then the second term of (A.5) will reduce to

1
NT

T−2∑
t=1

w′t−1 (IN −Pt−1) wt−1

=
1
NT

T−2∑
t=1

(
µt−1 + (t− 1) εt−1

)′ (IN −Pt−1)
(
µt−1 + (t− 1) εt−1

)
≤ 1

NT

T−2∑
t=1

(
µt−1 + (t− 1) εt−1

)′ (
µt−1 + (t− 1) εt−1

)
=

1
NT

T−2∑
t=1

µ′t−1µt−1 +
1
NT

T−2∑
t=1

(t− 1)2 ε′t−1εt−1 +
2
NT

T−2∑
t=1

(t− 1) ε′t−1µt−1, (A.23)

where the first equality follows from the fact that (IN −Pt−1) (yt−1 − Zt−1at−1 − Zt−1bt−1) =
0, and the penultimate inequality holds since(

µt−1 + (t− 1) εt−1

)′ (IN −Pt−1)
(
µt−1 + (t− 1) εt−1

)
≤ λmax (IN −Pt−1)

[(
µt−1 + (t− 1) εt−1

)′ (
µt−1 + (t− 1) εt−1

)]
,

where λmax (IN −Pt−1) denotes the maximum eigenvalue of (IN −Pt−1), which is equal to 1
because (IN −Pt−1) is idempotent. And for (A.23), it can be shown that

1
NT

T−2∑
t=1

µ′t−1µt−1 = op (1) ,
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since

1
NT

T−2∑
t=1

E
(
µ′t−1µt−1

)
=

1
T

T−2∑
t=1

E
(
µ2
it−1

)
≤ 1
T

T−2∑
t=1

O

(
1
t

)
= O

(
log T
T

)
→ 0, as T →∞,

by using the result (A.17). Similarly, we have

1
NT

T−2∑
t=1

(t− 1)2 ε′t−1εt−1 = op (1) ,

since

1
NT

T−2∑
t=1

(t− 1)2E
(
ε′t−1εt−1

)
=

1
T

T−2∑
t=1

(t− 1)2E
(
ε2it−1

)
≤ 1
T

T−2∑
t=1

O

(
1
t

)
= O

(
log T
T

)
→ 0, as T →∞,

by using the result (A.22). For the cross-product term, it can be shown that by using the
Cauchy–Schwarz inequality we have

∣∣E (ε′t−1µt−1

)∣∣ ≤√E (ε′t−1εt−1

)
E
(
µ′t−1µt−1

)
= O

(
1
t2

)
,

which leads to
2
NT

T−2∑
t=1

(t− 1) ε′t−1µt−1 = op (1) ,

by following the above derivation.
As a result, as (N,T )→∞, we obtain

1
NT

T−2∑
t=1

w′t−1Pt−1wt−1 =
1
NT

T−2∑
t=1

w′t−1wt−1 + op (1)

→ p
σ2
u

1− γ2
,

as required.

B.1 Asymptotics of GMM based on FOD and FD

Lemma A.3 Under Assumptions (A1)-(A4) as well as restriction T
N → c 6= 0 < ∞ as

(N,T )→∞, then the following holds for forward demeaning case,
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(a).

1
NT

T−2∑
t=1

y(f)′
t−1Pt−1y

(f)
t−1 =

1
NT

T−2∑
t=1

w′t−1Pt−1wt−1 + op (1)

→ p
σ2
u

1− γ2
,

(b).

1√
NT

T−2∑
t=1

y(f)′
t−1Pt−1u

(f)
t =

1√
NT

T−2∑
t=1

w′t−1Pt−1ut + op (1)

→ dN

(
− σ2

u

1− γ

√
T

N
,

σ4
u

1− γ2

)
.

Proof. (a) In order to prove this result, using the result (A.4), we have y(f)
t−1 = w(f)

t−1, where

w(f)
t−1 = fttwt−1 + ft,t+1wt + · · ·+ ft,TwT−1 =

T∑
s=t

ftsws−1.

Given the above equalities, we can obtain

1
NT

T−2∑
t=1

y(f)′
t−1Pt−1y

(f)
t−1 =

1
NT

T−2∑
t=1

w(f)′
t−1Pt−1w

(f)
t−1

=
1
NT

T−2∑
t=1

(
T∑

s1=t

fts1ws1−1

)′
Pt−1

(
T∑

s2=t

fts2ws2−1

)

=
1
NT

T−2∑
t=1

(
fttwt−1 +

T−1∑
s1=t

ft,s1+1ws1

)′
Pt−1

(
fttwt−1 +

T−1∑
s2=t

ft,s2+1ws2

)

=
1
NT

T−2∑
t=1

f2
ttw
′
t−1Pt−1wt−1 +

2
NT

T−2∑
t=1

fttw′t−1Pt−1

T−1∑
s2=t

ft,s2+1ws2

+
1
NT

T−2∑
t=1

T−1∑
s1,s2=t

ft,s1+1ft,s2+1w′s1Pt−1ws2

= A1 +A2 +A3, say,

where

A1 =
1
NT

T−2∑
t=1

f2
ttw
′
t−1Pt−1wt−1 =

1
NT

T−2∑
t=1

(
1 +O

(
1

T − t

))
w′t−1Pt−1wt−1 + op (1)

=
1
NT

T−2∑
t=1

w′t−1Pt−1wt−1 +Op

(
log T
T

)
→ p

σ2
u

1− γ2
,
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as (N,T )→∞ by using the fact that ftt = 1 +O
(

1
T−t

)
from (2.3) and the results of Lemma

(A.2). For the second term A2, we have

A2 =
2
NT

T−2∑
t=1

T−1∑
s=t

(
1 +O

(
1

T − t

))
w′t−1Pt−1

[
−O

(
1

T − t

)
+O

(
s− t+ 1
(T − t)2

)]
ws

= − 2
NT

T−2∑
t=1

O

(
1

T − t

)
w′t−1Pt−1

T−1∑
s=t

ws +
2
NT

T−2∑
t=1

T−1∑
s=t

O

(
s− t+ 1
(T − t)2

)
w′t−1Pt−1ws + op (1)

= A21 +A22,

where

A21 = − 2
NT

T−2∑
t=1

O

(
1

T − t

)
w′t−1Pt−1

T−1∑
s=t

(
γs−t+1wt−1 +

s∑
l=t

γs−lul

)

= − 2
NT

T−2∑
t=1

O

(
1

T − t

)
w′t−1Pt−1wt−1

T−1∑
s=t

γs−t+1 − 2
NT

T−2∑
t=1

O

(
1

T − t

) T−1∑
s=t

s∑
l=t

γs−lw′t−1Pt−1ul

= − 2γ
NT

T−2∑
t=1

O

(
1

T − t

)
w′t−1Pt−1wt−1

1− γT−t

1− γ
+ op (1)

= Op

(
log T
T

)
= op (1) ,

as T →∞, where the third equality holds simply because E
(
w′t−1Pt−1ul

)
= 0 for all l ≥ t and

by using the results of Lemma (A.1), and the last identity holds by following Lemma (A.2).
Similarly,

A22 =
2
NT

T−2∑
t=1

T−1∑
s=t

O

(
s− t+ 1
(T − t)2

)
w′t−1Pt−1

(
γs−t+1wt−1 +

s∑
l=t

γs−lul

)

=
2
NT

T−2∑
t=1

T−1∑
s=t

O

(
s− t+ 1
(T − t)2

)
γs−t+1w′t−1Pt−1wt−1 + op (1)

=
2
NT

T−2∑
t=1

O

(
1

(T − t)2

)
w′t−1Pt−1wt−1

T−1∑
s=t

(s− t+ 1) γs−t+1 + op (1)

=
2
NT

T−2∑
t=1

O

(
1

(T − t)2

)
w′t−1Pt−1wt−1

(
γ
(
1− γT−t

)
(1− γ)2

− (T − t) γT−t+1

1− γ

)
+ op (1)

= − 2
NT

T−2∑
t=1

O

(
1

T − t

)
w′t−1Pt−1wt−1

γT−t+1

1− γ
+ op (1)

= Op

(
log T
T

)
= op (1) ,

as T →∞, and then we have A2 = op (1) .
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Finally, for the term A3, by following the derivation of A2, we have

A3 =
1
NT

T−2∑
t=1

O

(
1

(T − t)2

) T−1∑
s1,s2=t

γs1−t+1wt−1 +
s1∑
l1=t

γs1−l1ul1

′Pt−1

×

γs2−t+1wt−1 +
s2∑
l2=t

γs2−l2ul2

+ op (1)

=
1
NT

T−2∑
t=1

O

(
1

(T − t)2

)
w′t−1Pt−1wt−1

T−1∑
s1,s2=t

γs1−t+1γs2−t+1 +

+
2
NT

T−2∑
t=1

O

(
1

(T − t)2

) T−1∑
s1,s2=t

γs1−t+1
s2∑
l2=t

γs2−l2w′t−1Pt−1ul2

+
1
NT

T−2∑
t=1

O

(
1

(T − t)2

) T−1∑
s1,s2=t

s1∑
l1=t

γs1−l1
s2∑
l2=t

γs2−l2u′l1Pt−1ul2

= A31 +A32 +A33, say,

and it is obvious that A31 = op (1) and A32 = op (1) by following the above derivation, and for
A33, since

E
(
u′l1Pt−1ul2

)
=

{
0 if l1 6= l2

σ2
ut if l1 = l2

,

under Assumption (A1), then

A33 =
1
NT

T−2∑
t=1

O

(
1

(T − t)2

) T−1∑
s=t

s∑
l=t

γ2s−2lu′lPt−1ul + op (1)

=
C

NT

T−2∑
t=1

O

(
t

T − t

)
+ op (1)

= Op

(
log T
N

)
= op (1) ,

under assumption that T
N → c 6= 0 as N →∞.

Consequently, combining the above results yields

1
NT

T−2∑
t=1

y(f)′
t−1Pt−1y

(f)
t−1 →p

σ2
u

1− γ2
,

as required.

27



(b) To show this result, from the above derivation, we have u(f)
t =

∑T
s=t ftsus, then

1√
NT

T−2∑
t=1

y(f)′
t−1Pt−1u

(f)
t

=
1√
NT

T−2∑
t=1

w(f)′
t−1Pt−1u

(f)
t

=
1√
NT

T−2∑
t=1

(
fttwt−1 +

T−1∑
s1=t

ft,s1+1ws1

)′
Pt−1

(
fttut +

T∑
s2=t+1

fts2us2

)

=
1√
NT

T−2∑
t=1

f2
ttw
′
t−1Pt−1ut +

1√
NT

T−2∑
t=1

fttw′t−1Pt−1

T∑
s2=t+1

fts2us2

+
1√
NT

T−2∑
t=1

T−1∑
s1=t

ft,s1+1fttw′s1Pt−1ut +
1√
NT

T−2∑
t=1

T−1∑
s1=t

T∑
s2=t+1

ft,s1+1fts2w
′
s1Pt−1us2

= B1 +B2 +B3 +B4, say,

where the first termB1 will contribute to the limiting distribution, since E
(

1√
NT

∑T−2
t=1 w′t−1Pt−1ut

)
=

0, and

V ar

(
1√
NT

T−2∑
t=1

w′t−1Pt−1ut

)
=

1
NT

T−2∑
t=1

E
(
w′t−1Pt−1utu′tPt−1wt−1

)
=

σ2
u

NT

T−2∑
t=1

E
(
w′t−1Pt−1wt−1

)
→ σ4

u

1− γ2
,

by Lemma (A.2) and cov(w′t−1Pt−1ut,w′s−1Ps−1us) = 0, for t > s. Consequently, we have

1√
NT

T−2∑
t=1

f2
ttw
′
t−1Pt−1ut =

1√
NT

T−2∑
t=1

w′t−1Pt−1ut + op (1)

→ dN

(
0,

σ4
u

1− γ2

)
,

from a standard central limit theorem for autoregressive processes.
For the second term, we have

B2 =
1√
NT

T−2∑
t=1

fttw′t−1Pt−1

T∑
s2=t+1

fts2us2

=
1√
NT

T−2∑
t=1

(
1 +O

(
1

T − t

))
w′t−1Pt−1

T∑
s2=t+1

[
−O

(
1

T − t

)
+O

(
s− t

(T − t)2

)]
us2

= − 1√
NT

T−2∑
t=1

O

(
1

T − t

) T∑
s2=t+1

w′t−1Pt−1us2 + op (1)

= op (1) ,
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since E
(
w′t−1Pt−1us

)
= 0 for all s > t.

For the third term, we have

B3 =
1√
NT

T−2∑
t=1

T−1∑
s1=t

ft,s1+1w′s1Pt−1fttut

=
1√
NT

T−2∑
t=1

T−1∑
s=t

[
−O

(
1

T − t

)
+O

(
s+ 1− t
(T − t)2

)](
1 +O

(
1

T − t

))
w′sPt−1ut

= − 1√
NT

T−2∑
t=1

T−1∑
s=t

O

(
1

T − t

)
w′sPt−1ut −

1√
NT

T−2∑
t=1

T−1∑
s=t

O

(
1

(T − t)2

)
w′sPt−1ut

+
1√
NT

T−2∑
t=1

T−1∑
s=t

O

(
s+ 1− t
(T − t)2

)
w′sPt−1ut + op (1)

= B31 +B32 +B33 + op (1) ,

note that for s ≥ t,

E
(
w′sPt−1ut

)
= γs−tE

(
u′tPt−1ut

)
= γs−tE

(
tr
(
u′tPt−1ut

))
= γs−tσ2

ut,

then we have

B31 = − σ2
u√
NT

T−2∑
t=1

t

T − t

T−1∑
s=t

γs−t + op (1)

= − σ2
u√
NT

T−2∑
t=1

t

T − t
1− γT−t

1− γ
+ op (1)

= − σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
+

σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
γT−t + op (1) ,

and

B32 = − σ2
u√
NT

T−2∑
t=1

t

(T − t)2
T−1∑
s=t

γs−t + op (1)

= − σ2
u√
NT

T−2∑
t=1

t

(T − t)2
1− γT−t

1− γ
+ op (1)

= − σ2
u

1− γ
1√
NT

T−2∑
t=1

t

(T − t)2
+ op (1) ,
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for the last term, we have

B33 =
σ2
u√
NT

T−2∑
t=1

T−1∑
s=t

t(s+ 1− t)
(T − t)2

γs−t + op (1)

=
σ2
u√
NT

T−2∑
t=1

t

(T − t)2
T−1∑
s=t

(s+ 1− t) γs−t + op (1)

=
σ2
u√
NT

T−2∑
t=1

t

(T − t)2

(
1− γT−t

(1− γ)2
− γT−t

1− γ
(T − t)

)
+ op(1)

=
σ2
u

(1− γ)2
1√
NT

T−2∑
t=1

t
(
1− γT−t

)
(T − t)2

− σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
γT−t + op(1)

=
σ2
u

(1− γ)2
1√
NT

T−2∑
t=1

t

(T − t)2
− σ2

u

1− γ
1√
NT

T−2∑
t=1

t

T − t
γT−t + op(1).

For the fourth term, by using the similar argument above, we obtain

B4 =
1√
NT

T−2∑
t=1

T−1∑
s1=t

T∑
s2=t+1

ft,s1+1fts2w
′
s1Pt−1us2

=
1√
NT

T−2∑
t=1

T−1∑
s1=t

T∑
s2=t+1

(
−O

(
1

T − t

)
+O

(
s1 + 1− t
(T − t)2

))
×
(
−O

(
1

T − t

)
+O

(
s2 − t

(T − t)2

))
w′s1Pt−1us2

=
1√
NT

T−2∑
t=1

T∑
s1=t−1

T∑
s2=t+1

O

(
1

(T − t)2

)
w′s1Pt−1us2 + op (1)

=
1√
NT

T−2∑
t=1

T∑
s1≥s2

O

(
1

(T − t)2

)
w′s1Pt−1us2 + op (1)

where the last equality holds since E
(
w′s1Pt−1us2

)
= 0 for s1 < s2. And notice that

w′s1Pt−1us2 =

γs1−s2+1ws2−1 +
s1∑
l=s2

γs1−lul

′ Pt−1us2 =
s1∑
l=s2

γs1−lu′lPt−1us2 + op(1)

= γs1−s2u′s2Pt−1us2 + op(1)

→ pγ
s1−s2σ2

ut,
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as s1 ≥ s2, then we have

B4 =
σ2
u√
NT

T−2∑
t=1

t

(T − t)2
T∑

s1≥s2

γs1−s2 + op (1)

=
σ2
u√
NT

T−2∑
t=1

t

(T − t)2
T∑

s2=t+1

T∑
s1=s2

γs1−s2 + op (1)

=
σ2
u√
NT

T−2∑
t=1

t

(T − t)2
T∑

s2=t+1

1− γT−s2
1− γ

+ op (1)

=
σ2
u

1− γ
1√
NT

T−2∑
t=1

t(T − t− 1)
(T − t)2

− σ2
u

1− γ
1√
NT

T−2∑
t=1

t

(T − t)2
T∑

s2=t+1

γT−s2 + op (1)

=
σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
− σ2

u

(1− γ)2
1√
NT

T−2∑
t=1

t(1− γT−t)
(T − t)2

+ op (1)

=
σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
− σ2

u

(1− γ)2
1√
NT

T−2∑
t=1

t

(T − t)2
+ op (1)

Consequently, we have

B3 +B4 = − σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
+

σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
γT−t

− σ2
u

1− γ
1√
NT

T−2∑
t=1

t

(T − t)2
+

σ2
u

(1− γ)2
1√
NT

T−2∑
t=1

t

(T − t)2

− σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t
γT−t +

σ2
u

1− γ
1√
NT

T−2∑
t=1

t

T − t

− σ2
u

(1− γ)2
1√
NT

T−2∑
t=1

t

(T − t)2
+ op (1)

= − σ2
u

1− γ
1√
NT

T−2∑
t=1

t

(T − t)2
+ op (1)

= − σ2
u

1− γ

√
T

N
+ op (1)

As a result, combining these results yields

1√
NT

T−2∑
t=1

y(f)′
t−1Pt−1u

(f)
t →d N

(
− σ2

u

1− γ

√
T

N
,

σ4
u

1− γ2

)
,

as required.
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Lemma A.4 Under Assumptions (A1)-(A4) as well as restriction T 3

N → κ 6= 0 < ∞ as
(N,T )→∞, then the following holds for FD case,

(a).
1
NT

T∑
t=3

∆2y′t−1Pt−3∆2yt−1 →p
(1− γ)3

1 + γ
σ2
u,

(b).

1√
NT

T∑
t=3

∆2y′t−1Pt−3∆2ut →d N

(
−(4− γ)σ2

u

2

√
T 3

N
,
2 (1− γ)4 (3− γ)σ4

u

1 + γ

)
.

Proof. (a) The proof follows the previous derivation with a little modification to fit the case
of FD transformation. We note that

1
NT

T∑
t=3

∆2y′t−1Pt−3∆2yt−1

=
1
NT

T∑
t=3

∆2w′t−1Pt−3∆2wt−1

=
1
NT

T∑
t=3

(
w′t−1 − 2w′t−2 + w′t−3

)
Pt−3 (wt−1 − 2wt−2 + wt−3)

=
1
NT

T∑
t=3

w′t−1Pt−3wt−1 −
4
NT

T∑
t=3

w′t−1Pt−3wt−2 +
2
NT

T∑
t=3

w′t−1Pt−3wt−3

+
4
NT

T∑
t=3

w′t−2Pt−3wt−2 −
4
NT

T∑
t=3

w′t−2Pt−3wt−3 +
1
NT

T∑
t=3

w′t−3Pt−3wt−3

=
1
NT

T∑
t=3

(
γ4 − 4γ3 + 6γ2 − 4γ + 1

)
w′t−3Pt−3wt−3

+
1
NT

T∑
t=3

u′t−1Pt−3ut−1 +

(
γ2 − 4γ + 4

)
NT

T∑
t=3

u′t−2Pt−3ut−2

=
(1− γ)4

NT

T∑
t=3

w′t−3Pt−3wt−3 +Op(
T

N
)

→ p
(1− γ)3

1 + γ
σ2
u,
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under restriction T 3

N → κ 6= 0 <∞ as N →∞ , which holds since, for example,

1
NT

T∑
t=3

w′t−1Pt−3wt−3

=
1
NT

T∑
t=3

(
γ2wt−3 + ut−1 + γut−2

)′Pt−3wt−3

=
1
NT

T∑
t=3

γ2w′t−3Pt−3wt−3 +
1
NT

T∑
t=3

u′t−1Pt−3wt−3 +
1
NT

T∑
t=3

γu′t−2Pt−3wt−3,

where the last two terms can be shown to be zero since E
(
u′t−1Pt−3wt−3

)
= 0, and

V ar

(
1
NT

T∑
t=3

u′t−1Pt−3wt−3

)
=

1
N2T 2

T∑
t=3

E
(
w′t−3Pt−3ut−1u′t−1Pt−3wt−3

)
=

σ2
u

N2T 2

T∑
t=3

E
(
w′t−3Pt−3wt−3

)
= o (1) .

Similar argument can be applied to other terms.
(b) To show this results, we have

1√
NT

T∑
t=3

∆2y′t−1Pt−3∆2ut

=
1√
NT

T∑
t=3

∆2w′t−1Pt−3∆2ut

=
1√
NT

T∑
t=3

(
w′t−1 − 2w′t−2 + w′t−3

)
Pt−3∆2ut

=
1√
NT

T∑
t=3

(
γ2w′t−3 + γu′t−2 + u′t−1 − 2γw′t−3 − 2u′t−2 + w′t−3

)
Pt−3∆2ut

=
(1− γ)2√

NT

T∑
t=3

w′t−3Pt−3∆2ut +
1√
NT

T∑
t=3

(
γu′t−2 + u′t−1 − 2u′t−2

)
Pt−3∆2ut

= H1 +H2,

since wt−1 = γwt−2 + ut−1. Then the first term H1 will contribute to the limiting distribution
with

H1 =
(1− γ)2√

NT

T∑
t=3

w′t−3Pt−3∆2ut →d N

(
0,

2 (1− γ)4 (3− γ)σ4
u

1 + γ

)
,
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since E (H1) = 0 and

V ar (H1) =
(1− γ)4

NT

T∑
t=3

E
(
w′t−3Pt−3∆2ut∆2u′tPt−3wt−3

)
+

2 (1− γ)4

NT

T∑
s>t

E
(
w′t−3P

′
t−3∆2ut∆2u′sPs−3ws−3

)
where the first term equals to

(1− γ)4

NT

T∑
t=3

E
(
w′t−3Pt−3 (ut − 2ut−1 + ut−2) (ut − 2ut−1 + ut−2)′Pt−3wt−3

)
=

(1− γ)4

NT

T∑
t=3

E
(
w′t−3Pt−3

(
utu′t + 4ut−1u′t−1 + ut−2u′t−2

)
Pt−3wt−3

)
=

6σ2
u (1− γ)4

NT

T∑
t=3

E
(
w′t−3Pt−3wt−3

)
=

6 (1− γ)4 σ4
u

1− γ2
+ o(1),

and for the second term, we have

2 (1− γ)4

NT

T∑
t=3

T∑
s=t+1

E
(
w′t−3Pt−3∆2ut∆2u′sPs−3ws−3

)
=

2 (1− γ)4

NT

T∑
t=3

[E
(
w′t−3Pt−3∆2ut∆2u′t+1Pt−2wt−2

)
+ E

(
w′t−3Pt−3∆2ut∆2u′t+2Pt−1wt−1

)
]

= −8 (1− γ)4 σ2
u

NT

T∑
t=3

E
(
w′t−3Pt−3wt−2

)
+

2 (1− γ)4 σ2
u

NT

T∑
t=3

E
(
w′t−3Pt−3wt−1

)
= −8γ (1− γ)4 σ4

u

1− γ2
+

2γ2 (1− γ)4 σ4
u

1− γ2
+ o(1),

where the last equality holds by Lemma (A.2). Consequently, we have

V ar (H1) =
6σ4

u (1− γ)4

1− γ2
− 8γσ4

u (1− γ)4

1− γ2
+

2γ2σ4
u (1− γ)4

1− γ2
+ o(1)

=
2 (1− γ)4 (3− γ)σ4

u

1 + γ
+ o(1).
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And H2 will contribute to the asymptotic bias with

H2 =
1√
NT

T∑
t=3

(
γu′t−2 + u′t−1 − 2u′t−2

)
Pt−3 (ut − 2ut−1 + ut−2)

=
γ − 2√
NT

T∑
t=3

u′t−2Pt−3ut−2 −
2√
NT

T∑
t=3

u′t−1Pt−3ut−1 + op (1)

= −(4− γ)σ2
u√

NT

T∑
t=3

t+ op (1)

= −(4− γ)σ2
u

2

√
T 3

N
+ op (1) .

Combining these results yields

1√
NT

T∑
t=3

∆2y′t−1Pt−3∆2ut →d N

(
−(4− γ)σ2

u

2

√
T 3

N
,
2 (1− γ)4 (3− γ)σ4

u

1 + γ

)
.

B.2 Asymptotics of Simple IV based on FOD and FD

Lemma A.5 Under Assumptions (A1)-(A4) and as (N,T )→∞, then the following holds for
FOD case

(a).
1
NT

T−2∑
t=2

∆y′t−1y
(f)
t−1 →p

σ2
u

1 + γ
,

(b).
1√
NT

T−2∑
t=2

∆y′t−1u
(f)
t →d N

(
0, σ2

u

(
σ2
δ

(1− γ)2
+

2σ2
u

1 + γ

))
.

Proof. (a) In order to prove this result, using the result (A.4), we have y(f)
t−1 = w(f)

t−1, where

w(f)
t−1 = fttwt−1 + ft,t+1wt + · · ·+ ft,TwT−1 =

T∑
s=t

ftsws−1.

Also, we have ∆yt = δ∗+∆wt from (A.1) where δ∗ = (δ∗1, . . . , δ
∗
N )′ and ∆wt = (∆w1t, . . . ,∆wNt)

′ .
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Given the above results, we can obtain

1
NT

T−2∑
t=2

∆y′t−1y
(f)
t−1 =

1
NT

T−2∑
t=2

(
δ∗′ + ∆w′t−1

)( T∑
s=t

ftsws−1

)

=
1
NT

T−2∑
t=2

(
δ∗′ + ∆w′t−1

)(
fttwt−1 +

T∑
s=t

ft,s+1ws

)

=
1
NT

T−2∑
t=2

∆w′t−1

(
fttwt−1 +

T∑
s=t

ft,s+1ws

)
+ op (1) ,

where the last equality holds by using the construction of (A.2) and Assumption (A1). By
using fts (s ≥ t) defined in (2.3), it can be shown that

1
NT

T−2∑
t=2

(
ftt∆w′t−1wt−1 +

T∑
s=t

ft,s+1∆w′t−1ws

)

=
1
NT

T−2∑
t=2

ftt∆w′t−1wt−1 +
1
NT

T−2∑
t=2

T∑
s=t

ft,s+1∆w′t−1ws

=
1
NT

T−2∑
t=2

(
1 +O

(
1

T − t

))
∆w′t−1wt−1 +

1
NT

T−2∑
t=2

T∑
s=t

(
−O

(
1

T − t

)
+O

(
s− t+ 1
(T − t)2

))
∆w′t−1ws

=
1
NT

T−2∑
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∆w′t−1wt−1 +
1
NT

T−2∑
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O

(
1

T − t

)
∆w′t−1wt−1

− 1
NT

T−2∑
t=2

T∑
s=t

O

(
1

T − t

)
∆w′t−1ws +

1
NT

T−2∑
t=2

T∑
s=t

O

(
s− t+ 1
(T − t)2

)
∆w′t−1ws

= I1 + I2 + I3 + I4.

For the first term, noticing that wit is an AR(1) process in (A.2), we have

I1 =
1
NT

T−2∑
t=2

∆w′t−1wt−1 =
1
NT

T−2∑
t=2

(wt−1 −wt−2)′wt−1

=
1
NT

T−2∑
t=2

(
w′t−1wt−1 −w′t−2wt−1

)
=

σ2
u

1 + γ
+ op(1).

By using the similar argument above, we obtain

I2 =
1
NT

T−2∑
t=2

O

(
1

T − t

)
∆w′t−1wt−1

=
σ2
u

1 + γ

1
T

T−2∑
t=2

O

(
1

T − t

)
+ op(1) = Op

(
log T
T

)
,
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and

I3 = − 1
NT

T−2∑
t=2

T∑
s=t

O

(
1

T − t

)
∆w′t−1ws

= − 1
NT

T−2∑
t=2

O

(
1

T − t

) T∑
s=t

(
γs−t+1∆w′t−1wt−1 +

s∑
l=t

γs−l∆w′t−1ul

)

= − 1
NT

T−2∑
t=2

O

(
1

T − t

) T∑
s=t

γs−t+1∆w′t−1wt−1 + op(1)

= − σ2
u

1 + γ

γ

1− γ
1
T

T−2∑
t=2

O

(
1

T − t

)
+ op(1) = Op

(
log T
T

)
,

where the third equality holds since E
(
w′t−1ul

)
= 0 for all l ≥ t. Finally, we have

I4 =
1
NT

T−2∑
t=2

T∑
s=t

O

(
s− t+ 1
(T − t)2

)
∆w′t−1ws

=
σ2
u

1 + γ

1
T

T−2∑
t=2

O

(
1

(T − t)2

) T∑
s=t

(s− t+ 1) γs−t+1 + op(1)

=
σ2
u

1 + γ

1
T

T−2∑
t=2

O

(
1

(T − t)2

)(
γ
(
1− γT−t+1

)
(1− γ)2

− (T − t+ 1) γT−t+2

1− γ

)
+ op(1)

=
γσ2

u

(1 + γ) (1− γ)2
1
T

T−2∑
t=2

1− γT−t+1

(T − t)2
− σ2

u

1 + γ

1
1− γ

1
T

T−2∑
t=2

γT−t+2

T − t
+ op(1)

= Op(
1
T

),

where the last equality holds by noticing that
∑T−2

t=2
1−γT−t+1

(T−t)2 and
∑T−2

t=2
γT−t+2

T−t are convergent
as |γ| < 1. Combining these results, we can obtain

1
NT

T−2∑
t=2

(
ftt∆w′t−1wt−1 +

T∑
s=t

ft,s+1∆w′t−1ws

)
=

σ2
u

1 + γ
+Op

(
log T
T

)
.

As a result, we have
1
NT

T−2∑
t=2

∆y′t−1y
(f)
t−1 →p

σ2
u

1 + γ
,

as (N,T )→∞.
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(b) To this end, we observe that

1√
NT

T−2∑
t=2

∆y′t−1u
(f)
t

=
1√
NT

T−2∑
t=2

(δ∗ + ∆wt−1)′
(
fttut +

T∑
s=t+1

ftsus

)

=
1√
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(δ∗ + ∆wt−1)′ ut −
1√
NT

T−2∑
t=2

O

(
1

T − t

)
(δ∗ + ∆wt−1)′

T∑
s=t+1

us + op (1) ,

where the last equality holds by using the properties of fst in (2.3). For the second term, it is
obvious that the expectation is zero and the variance is given by

1
NT

T−2∑
s,t=2

E

(
O

(
1

T − t

)
O

(
1

T − s

)
(δ∗ + ∆wt−1)′

T∑
t1=t+1

ut1

T∑
s1=s+1

u′s1 (δ∗ + ∆ws−1)

)

=
1
NT
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E

(
O

(
1

(T − t)2

)
(δ∗ + ∆wt−1)′

T∑
t1=t+1

ut1u
′
t1 (δ∗ + ∆wt−1)

)

+
2
NT

∑
s<t

E

(
O

(
1

T − t

)
O

(
1

T − s

)
(δ∗ + ∆wt−1)′

T∑
t1=t+1

ut1

T∑
s1=s+1

u′s1 (δ∗ + ∆ws−1)

)
,

where, for t = s, we have

1
NT

T−2∑
t=2

O

(
1

(T − t)2

)
E

(
(δ∗ + ∆wt−1)′Et

(
T∑

t1=t+1

ut1u
′
t1

)
(δ∗ + ∆wt−1)

)

=
1
NT

T−2∑
t=2

O

(
1

T − t

)
E
(
(δ∗ + ∆wt−1)′ (δ∗ + ∆wt−1)

)
=

(
σ2
δ

(1− γ)2
+

2σ2
u

1 + γ

)
1
T

T−2∑
t=2

O

(
1

T − t

)
= O

(
log T
T

)
,
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and for t > s,

E

(
O

(
1

T − t

)
O

(
1

T − s

)
(δ∗ + ∆wt−1)′

T∑
t1=t+1

ut1

T∑
s1=s+1

u′s1 (δ∗ + ∆ws−1)

)

= E

(
O

(
1

T − t

)
O

(
1

T − s

)
(δ∗ + ∆wt−1)′Et

(
T∑

t1=t+1

ut1

T∑
s1=s+1

u′s1

)
(δ∗ + ∆ws−1)

)

= O

(
1

T − s

)
σ2
uE
(
(δ∗ + ∆wt−1)′ (δ∗ + ∆ws−1)

)
= O

(
1

T − s

)
Nσ2

u

(
σ2
δ

(1− γ)2
− γt−s−1 (1− γ)σ2

u

1 + γ

)
,

then

1
NT

T−2∑
s,t=2

E

(
O

(
1

T − t

)
O

(
1

T − s

)
(δ∗ + ∆wt−1)′

T∑
t1=t+1

ut1

T∑
s1=s+1

u′s1 (δ∗ + ∆ws−1)

)

=
2σ2

u

T

∑
s<t

O

(
1

T − s

)(
σ2
δ

(1− γ)2
− γt−s−1 (1− γ)σ2

u

1 + γ

)
+O

(
log T
T

)
= O

(
log T
T

)
→p 0,

as (N,T )→∞.
Consequently, we have

1√
NT

T−2∑
t=2

∆y′t−1u
(f)
t =

1√
NT

T−2∑
t=2

(δ∗ + ∆wt−1)′ ut + op (1) ,

and the first term will contribute to the limiting distribution with zero mean and the following
asymptotic variance

V ar

(
1√
NT

T−2∑
t=2

(δ∗ + ∆wt−1)′ ut

)
=

1
NT

T−2∑
t=2

E
[
(δ∗ + ∆wt−1)′Et

(
utu′t

)
(δ∗ + ∆wt−1)

]
=

σ2
u

NT

T−2∑
t=2

E
[
(δ∗ + ∆wt−1)′ (δ∗ + ∆wt−1)

]
→ σ2

u

(
σ2
δ

(1− γ)2
+

2σ2
u

1 + γ

)
,

as (N,T )→∞, where Et (·) is the conditional expectation at time t.
Combining the above derivation yields

1√
NT

T−2∑
t=2

∆y′t−1u
(f)
t →d N

(
0, σ2

u

(
σ2
δ

(1− γ)2
+

2σ2
u

1 + γ

))
.
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Lemma A.6 Under Assumptions (A1)-(A4) and as (N,T )→∞, then the following holds for
FD case,

(a).
1
NT

T∑
t=4

∆y′t−3∆2yt−1 →p
(1− γ)2

1 + γ
σ2
u,

(b)
1√
NT

T∑
t=4

∆y′t−3∆2ut →d N

(
0,

2
(
γ2 − 5γ + 10

)
σ4
u

1 + γ

)
.

Proof. (a) In order to prove this result, using the result (A.3), we have ∆2yit = ∆2wit, and
∆yt = δ∗ + ∆wt, then we can obtain

1
NT

T∑
t=4

∆y′t−3∆2yt−1

=
1
NT

T∑
t=4

(
δ∗′ + ∆w′t−3

)
∆2wt−1 =

1
NT

T∑
t=4

∆w′t−3∆2wt−1 + op (1)

=
1
NT

T∑
t=4

(
w′t−3 −w′t−4

)
(wt−1 − 2wt−2 + wt−3) + op (1)

=
1
NT

T∑
t=4

w′t−3wt−1 −
2
NT

T∑
t=4

w′t−3wt−2 +
1
NT

T∑
t=4

w′t−3wt−3

− 1
NT

T∑
t=4

w′t−4wt−1 +
2
NT

T∑
t=4

w′t−4wt−2 −
1
NT

T∑
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=
σ2
u

1− γ2

(
γ2 − 2γ + 1− γ3 + 2γ2 − γ

)
+ op (1)

→ p
(1− γ)2

1 + γ
σ2
u,

as (N,T )→∞.
(b) For this result, we have

E

(
1√
NT

T∑
t=4

∆y′t−3∆2ut

)
= 0,
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by the moment condition (4.7), also, we have
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∆y′t−3∆2ut

)

=
1
NT

T∑
s,t=4

E
(
∆y′t−3∆2ut∆2u′s∆ys−3
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)
,
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]
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2
δ
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+

12σ4
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,

and for the second term, we have

2
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E
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)
=
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E
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)
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(
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′
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=
2σ2
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−4E
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=
2σ2

u
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[
−4E

((
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)
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)
+ E

((
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)
(δ∗ + ∆wt−1)
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+ o (1)

= −
6σ2

uσ
2
δ

(1− γ)2
+
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1 + γ

8σ4
u −
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1 + γ

2γσ4
u + o (1) .

As a result, we have
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(
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NT

T∑
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)
→

2
(
γ2 − 5γ + 10

)
σ4
u
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and
1√
NT

T∑
t=4

∆y′t−3∆2ut →d N

(
0,

2
(
γ2 − 5γ + 10

)
σ4
u

1 + γ

)
,

as required.

C Invalidity of using level lagged variable as IV for simple IV

estimation

Take for the simple IV estimator based on FD as an example, if we multiply both sides of (2.8)
by yis (s < t− 2) and then take expectation, we obtain

E
(
yit−3∆2yit

)
= γE

(
yit−3∆2yi,t−1

)
.

Using the notations in (A.1), we have

E
(
yit−3∆2yit

)
= E

[
(α∗i + δ∗i (t− 3) + wit−3) ∆2wit

]
= E

(
wit−3∆2wit

)
=

1− γ
1 + γ

γσ2
u,

where wit is an AR (1) process. Similarly, we have

E
(
yit−3∆2yi,t−1

)
= E

[
(α∗i + δ∗i (t− 3) + wit−3) ∆2wi,t−1

]
= E

(
wit−3∆2wi,t−1

)
=

1− γ
1 + γ

σ2
u.

As a result, we indeed have

γ =
[
E
(
yit−3∆2yi,t−1

)]−1
E
(
yit−3∆2yit

)
.

Consequently, based on FD transformation, the simple IV estimator using one level lag as
instrument can be given by

γ̂FDIV,level =

(
T∑
t=3

y′t−3∆2yt−1

)−1 T∑
t=3

y′t−3∆2yt,

and
√
NT

(
γ̂FDIV,level − γ

)
=

(
1
NT

T∑
t=3

y′t−3∆2yt−1

)−1
1√
NT

T∑
t=3

y′t−3∆2ut.
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However, for the limit of 1√
NT

∑T
t=3 y′t−3∆2ut, we have E

(
1√
NT

∑T
t=3 y′t−3∆2ut

)
= 0 and
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Similarly, for the limit of 1
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and the variance is given by
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for the first term, we have
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E
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]
+

1
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δ∗ + o (1)

= O
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.

For the second term, similarly, we can obtain

2
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2
N2T 2
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(t− 3) (s− 3) δ∗′E
(
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δ∗ + o (1)

= O

(
T
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)
,

as a result, as long as T
N 9 0 as N →∞, we have

V ar

(
1
NT

T∑
t=3

y′t−3∆2yt−1

)
9 0,

thus, the limit of 1
NT

∑T
t=3 y′t−3∆2yt−1 is not a constant and will be a random variable. For

simple IV estimator based on FOD transformation, if we use one level lag variables yis (s < t)
as instrument, similar results can be obtained.

D Additional Simulation Results

Noting that under assumptions A1-A3, we have E
(

∆yisu
(f)
it

)
= 0 for any s < t for model (2.6),

and E
(
∆yis∆2uit

)
= 0 for any s < t − 2 for model (2.7). As a result, in addition to use level

lags as instruments, we can also use first difference lags as instruments for GMM estimators.
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Similarly, it is also obvious that we can use the level lagged dependent variable as instrument
for the simple IV estimation. Using the same DGP and specification of parameters in the
Monte Carlo simulation, we consider two extra estimators, one is the GMM estimation using
all available first differenced lags as instruments, and the other is simple IV estimation using
only one level lag as instrument. The simulation results are summarized in Table A1-A3.

There are several interesting findings in Table A1-A3. On the one hand, for the GMM
estimation using all available first differenced lags as instruments, we note that they perform
quite similarly to the GMM using all level lags in terms of median estimates and iqr, i.e., whether
using level lags or first differenced lags will not affect the performance of GMM estimation based
on either FOD or FD transformed model. On the other, even if the level lagged variables yis
also satisfy the orthogonal condition for (2.8) of simple IV estimation, however, it is shown
above that the simple IV estimation using one level lag for both FOD and FD transformed
model is invalid. This observation is confirmed from the simulation in Table A1-A3, where we
can observe the iqr for simple IV estimation increases with the increase of T for a given N,

which is against the results when first differenced lag is used as instrument. The non-decreasing
observation of simple IV estimation using level lag is the evident that level lag can’t be used
as instrument for simple IV estimation for dynamic panel with both individual specific effects
and heterogenous time trend.
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